# TODO: Add comment # # Author: iovleff #----------------------------------------------------------------------- library(MixAll) data(iris) gauss_model <- clusterDiagGaussian( iris[1:4], nbCluster = 3, models= c("gaussian_pk_sjk") , strategy = clusterFastStrategy()) data<-gauss_model@component@data nbCluster <- gauss_model@nbCluster prop <- gauss_model@pk mean <- gauss_model@component@mean sigma <- gauss_model@component@sigma nbSample <- nrow(data) nbVariable <- ncol(data) f <-vector(length=nbSample) lnComp <- vector(length=nbCluster) for (i in 1:nbSample) { for (k in 1:nbCluster) { lnComp[k] = log(prop[k]) + sum(dnorm(data[i,], mean[k,], sigma[k,],log=TRUE)); } lmax <- max(lnComp) lnComp = lnComp -lmax; f[i] = log(sum(exp(lnComp))) + lmax; } if( abs(sum(f) - gauss_model@lnLikelihood) < 1.e-15 ) { print ("clusterDiagGaussianLikelihood failed") } else { print ("clusterDiagGaussianLikelihood successful") }