R Under development (unstable) (2025-08-31 r88749 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(MicrobTiSDA) > > test_check("MicrobTiSDA") ================================================================================== Call: randomForest(formula = group ~ ., data = otu_train, importance = TRUE) Type of random forest: classification Number of trees: 500 No. of variables tried at each split: 14 OOB estimate of error rate: 8.11% Confusion matrix: Control Sepsis class.error Control 18 0 0.0000000 Sepsis 3 16 0.1578947 ================================================================================== =========Classification results of the classifier on the training dataset========= Predicted Actural Control Sepsis Control 18 0 Sepsis 0 19 ================================================================================== ==========Classification results of the classifier on the testing dataset========= Predicted Actural Control Sepsis Control 7 0 Sepsis 1 6 ================================================================================== Square root transformation Wisconsin double standardization Run 0 stress 0.08352557 Run 1 stress 0.1017054 Run 2 stress 0.09730974 Run 3 stress 0.08352557 ... New best solution ... Procrustes: rmse 6.592384e-06 max resid 2.773812e-05 ... Similar to previous best Run 4 stress 0.1086 Run 5 stress 0.1184539 Run 6 stress 0.1268487 Run 7 stress 0.1250471 Run 8 stress 0.0905587 Run 9 stress 0.1076963 Run 10 stress 0.1026105 Run 11 stress 0.09460812 Run 12 stress 0.1097049 Run 13 stress 0.1138676 Run 14 stress 0.1189311 Run 15 stress 0.1159954 Run 16 stress 0.0905587 Run 17 stress 0.0964984 Run 18 stress 0.08983798 Run 19 stress 0.08597992 Run 20 stress 0.1193368 *** Best solution repeated 1 times ================================================================================== Call: randomForest(formula = group ~ ., data = otu_train, importance = TRUE) Type of random forest: classification Number of trees: 500 No. of variables tried at each split: 14 OOB estimate of error rate: 8.11% Confusion matrix: Control Sepsis class.error Control 18 0 0.0000000 Sepsis 3 16 0.1578947 ================================================================================== =========Classification results of the classifier on the training dataset========= Predicted Actural Control Sepsis Control 18 0 Sepsis 0 19 ================================================================================== ==========Classification results of the classifier on the testing dataset========= Predicted Actural Control Sepsis Control 7 0 Sepsis 1 6 ================================================================================== ================================================================================== Call: randomForest(formula = group ~ ., data = otu_train, importance = TRUE) Type of random forest: classification Number of trees: 500 No. of variables tried at each split: 14 OOB estimate of error rate: 8.11% Confusion matrix: Control Sepsis class.error Control 18 0 0.0000000 Sepsis 3 16 0.1578947 ================================================================================== =========Classification results of the classifier on the training dataset========= Predicted Actural Control Sepsis Control 18 0 Sepsis 0 19 ================================================================================== ==========Classification results of the classifier on the testing dataset========= Predicted Actural Control Sepsis Control 7 0 Sepsis 1 6 ================================================================================== [ FAIL 0 | WARN 0 | SKIP 0 | PASS 40 ] > > proc.time() user system elapsed 46.09 2.59 48.68