test_that("Data.cluster", { data("OSLO.infant.data") data("OSLO.infant.meta") oslo_data_filt = Data.filter(Data = OSLO.infant.data,metadata = OSLO.infant.meta, OTU_counts_filter_value = 5000, OTU_filter_value = 0.2, Group_var = 'ID') oslo_data_intp = Data.interpolate(Data = oslo_data_filt,metadata = OSLO.infant.meta, Group_var = 'ID', Sample_ID = 'ID', Sample_Time = 'day') oslo_data_int = oslo_data_intp$Interpolated_Data oslo_meta_int = oslo_data_intp$Interpolated_Data_metadata oslo_data_trans = Data.trans(Data = oslo_data_int, metadata = oslo_meta_int, Group_var = 'Group') oslo_data_design = Design(metadata = oslo_meta_int, Group_var = 'Group', Sample_ID = 'ID', Sample_Time = 'Time', Pre_processed_Data = oslo_data_trans) oslo_model = Reg.SPLR(Data_for_Reg = oslo_data_design, pre_processed_data = oslo_data_trans, Knots = c(22,33), unique_values = 10) oslo_model_pred = Pred.data(Fitted_models = oslo_model, metadata = oslo_meta_int, Group = 'Group', Sample_Time = 'Time', time_step = 1) oslo_model_clust = Data.cluster(predicted_data = oslo_model_pred, clust_method = 'average', dend_title_size = 12, font_size = 2.5) expect_s3_class(oslo_model_clust,"MicrobTiSDA.cluster") expect_true(length(oslo_model_clust) == 3) })