test_that("Check likelihoods for alternative models", { set.seed(1) V <- rbind(c(0, 0), c(1, 0), c(1, 1), c(0, 1), c(-1, 1), c(-1, 0), c(0, -1)) E <- rbind(c(1, 2), c(2, 3), c(3, 4), c(4, 5), c(5, 6), c(6, 1), c(4, 1), c(1, 7)) graph <- metric_graph$new(V = V, E = E) kappa <- 10 tau <- 1/20 sigma_e <- 0.1 theta <- c(sigma_e, 1/tau, kappa) n.obs.per.edge <- 5 PtE <- NULL for(i in 1:graph$nE){ PtE <- rbind(PtE, cbind(rep(i, n.obs.per.edge), (runif(n.obs.per.edge)))) } u <- sample_spde(kappa = kappa, tau = tau, alpha = 2, graph = graph, PtE = PtE) y <- u + sigma_e*rnorm(n.obs.per.edge * graph$nE) df_temp <- data.frame(y = y, edge_number = PtE[,1], distance_on_edge = PtE[,2]) graph$add_observations(data=df_temp, normalized = TRUE) graph$compute_resdist() lik.exp.v1 <- likelihood_graph_covariance(graph, model = "isoCov", cov_function = exp_covariance, log_scale = FALSE, repl = NULL, X_cov = NULL, y_graph = graph$get_data()$y) lik.exp.v1 <- lik.exp.v1(theta) graph$observation_to_vertex() graph$compute_geodist() graph$compute_resdist() lik.exp.v2 <- likelihood_graph_covariance(graph, model = "isoCov", cov_function = exp_covariance, log_scale = FALSE, y_graph = graph$get_data()$y, X_cov = NULL, repl = NULL) lik.exp.v2 <- lik.exp.v2(theta) graph$compute_laplacian(full=TRUE) lik.gl1.v1 <- likelihood_graph_covariance(graph, model = "GL1", log_scale = FALSE, y_graph = graph$get_data()$y, repl = NULL, X_cov = NULL) lik.gl1.v1 <- lik.gl1.v1(theta) lik.gl2.v1 <- likelihood_graph_covariance(graph, model = "GL2", log_scale = FALSE, y_graph = graph$get_data()$y, repl = NULL, X_cov = NULL) lik.gl2.v1 <- lik.gl2.v1(theta) lik.gl1.v2 <- likelihood_graph_laplacian(graph, alpha = 1, y_graph = graph$get_data()$y, repl = NULL, X_cov = NULL, parameterization = "spde") lik.gl1.v2 <- lik.gl1.v2(log(theta)) lik.gl2.v2 <- likelihood_graph_laplacian(graph, alpha = 2, y_graph = graph$get_data()$y, repl = NULL, X_cov = NULL, parameterization = "spde") lik.gl2.v2 <- lik.gl2.v2(log(theta)) expect_equal(lik.exp.v1, lik.exp.v2, tolerance = 1e-10) expect_equal(lik.gl1.v1, lik.gl1.v2, tolerance = 1e-10) expect_equal(lik.gl2.v1, lik.gl2.v2, tolerance = 1e-10) }) test_that("Check agrement beteen covariance and precision cross validation", { set.seed(1) V <- rbind(c(0, 0), c(1, 0), c(1, 1), c(0, 1), c(-1, 1), c(-1, 0), c(0, -1)) E <- rbind(c(1, 2), c(2, 3), c(3, 4), c(4, 5), c(5, 6), c(6, 1), c(4, 1), c(1, 7)) graph <- metric_graph$new(V = V, E = E) kappa <- 10 tau <- 1/20 sigma_e <- 0.1 theta <- c(sigma_e, 1/tau, kappa) n.obs.per.edge <- 5 PtE <- NULL for(i in 1:graph$nE){ PtE <- rbind(PtE, cbind(rep(i, n.obs.per.edge), runif(n.obs.per.edge))) } u <- sample_spde(kappa = kappa, tau = tau, alpha = 2, graph = graph, PtE = PtE) y <- u + sigma_e*rnorm(n.obs.per.edge * graph$nE) df_temp <- data.frame(y = y, edge_number = PtE[,1], distance_on_edge = PtE[,2]) graph$add_observations(data=df_temp, normalized = TRUE) graph$observation_to_vertex() cv.alpha1.v1 <- posterior_crossvalidation_manual(theta, graph, model = "alpha1", data_name = "y") cv.alpha1.v2 <- posterior_crossvalidation_covariance_manual(theta, graph, model = "alpha1", data_name = "y") expect_equal(cv.alpha1.v1$mu, cv.alpha1.v2$mu, tolerance = 1e-10) expect_equal(cv.alpha1.v1$var, cv.alpha1.v2$var, tolerance = 1e-10) cv.alpha2.v1 <- posterior_crossvalidation_manual(theta, graph, model = "alpha2", data_name = "y") cv.alpha2.v2 <- posterior_crossvalidation_covariance_manual(theta, graph, model = "alpha2", data_name = "y") expect_equal(cv.alpha2.v1$mu, cv.alpha2.v2$mu, tolerance = 1e-10) expect_equal(cv.alpha2.v1$var, cv.alpha2.v2$var, tolerance = 1e-10) graph$compute_laplacian() cv.GL1.v1 <- posterior_crossvalidation_manual(theta, graph, model = "GL1", data_name = "y") cv.GL1.v2 <- posterior_crossvalidation_covariance_manual(theta, graph, model = "GL1", data_name = "y") expect_equal(cv.GL1.v1$mu, cv.GL1.v2$mu, tolerance = 1e-10) expect_equal(cv.GL1.v1$var, cv.GL1.v2$var, tolerance = 1e-10) cv.GL2.v1 <- posterior_crossvalidation_manual(theta, graph, model = "GL2", data_name = "y") cv.GL2.v2 <- posterior_crossvalidation_covariance_manual(theta, graph, model = "GL2", data_name = "y") expect_equal(cv.GL2.v1$mu, cv.GL2.v2$mu, tolerance = 1e-10) expect_equal(cv.GL2.v1$var, cv.GL2.v2$var, tolerance = 1e-10) })