#build graph Figure covariance between points test_that("Check if Matern(2) has equal variance on the edges on a circle", { theta <- c(1,2) P <- rbind(c(0,0), c(1,0), c(1,1), c(0,1)) #specify edges E <- rbind(c(1,2), c(2,3), c(1,4), c(3,4)) graph <- metric_graph$new(V = P, E = E) #if Line is null assume straight line #If we have a line keep #compute covarians for a given point P1 <- c(1, 0.1) #edge 1, 0.5 length in kappa <- theta[1] sigma <- theta[2] #compute covarains of the two edges of EP[1] Q <- spde_precision(kappa = kappa, tau = 1/sigma, alpha = 2, graph = graph) if(is.null(graph$CoB)) graph$buildC(2, FALSE) n_const <- length(graph$CoB$S) ind.const <- c(1:n_const) Tc <- graph$CoB$T[-ind.const,] Q_mod <- Tc%*%Q%*%t(Tc) R <- Cholesky(Q_mod, LDL = FALSE, perm = TRUE) Sigma_const <- t(Tc)%*%solve(Q_mod)%*%Tc Sigma_unit <- diag(Sigma_const[seq(1,dim(Q)[1],by=2),seq(1,dim(Q)[1],by=2)]) expect_equal(c(Sigma_unit - Sigma_unit[1]),rep(0,length(Sigma_unit)), tolerance=1e-10) })