R Under development (unstable) (2023-11-29 r85646 ucrt) -- "Unsuffered Consequences" Copyright (C) 2023 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > #### Matrix Factorizations --- of all kinds > > ## for R_DEFAULT_PACKAGES=NULL : > library(stats) > library(utils) > > library(Matrix) > source(system.file("test-tools.R", package = "Matrix"))# identical3() etc Loading required package: tools > options(warn = 0) > is64bit <- .Machine$sizeof.pointer == 8 > cat("doExtras:", doExtras,"; is64bit:", is64bit, "\n") doExtras: FALSE ; is64bit: TRUE > > ### "sparseQR" : Check consistency of methods > ## -------- > data(KNex, package = "Matrix") > mm <- KNex$mm > y <- KNex$y > stopifnot(is((Y <- Matrix(y)), "dgeMatrix")) > md <- as(mm, "matrix") # dense > > (cS <- system.time(Sq <- qr(mm))) # 0.009 user system elapsed 0.02 0.00 0.02 > (cD <- system.time(Dq <- qr(md))) # 0.499 (lynne, 2014 f); 1.04 lynne 2019 ????? user system elapsed 0.48 0.02 0.50 > cD[1] / cS[1] # dense is much ( ~ 100--170 times) slower user.self 24 > > ## chkQR() in ../inst/test-tools-1.R ; > > if(doExtras) { ## ~ 20 sec {"large" example} + 2x qr.R() warnings + cat("chkQR( ) .. takes time .. ") + system.time(chkQR(mm, y=y, a.qr = Sq, verbose=TRUE)) + system.time(chkQR(md, y=y, a.qr = Dq, verbose=TRUE)) + cat(" done: [Ok]\n") + } > > ## consistency of results dense and sparse > ## chk.qr.D.S() and checkQR.DS.both() >>> ../inst/test-tools-Matrix.R > chk.qr.D.S(Dq, Sq, y, Y) > > ## Another small example with pivoting (and column name "mess"): > suppressWarnings(RNGversion("3.5.0")); set.seed(1) > X <- rsparsematrix(9,5, 1/4, dimnames=list(paste0("r", 1:9), LETTERS[1:5])) > qX <- qr(X); qd <- qr(as(X, "matrix")) > ## are the same (now, *including* names): > assert.EQ(print(qr.coef(qX, 1:9)), qr.coef(qd, 1:9), tol=1e-14) A B C D E 1.2056600 -6.1033750 -20.4434698 -10.1046230 -0.9090909 > chk.qr.D.S(d. = qd, s. = qX, y = 1:9) > > > > ## rank deficient QR cases: --------------- > > ## From Simon (15 Jul 2009) + dimnames (11 May 2015) > set.seed(10) > a <- matrix(round(10 * runif(90)), 10,9, dimnames = + list(LETTERS[1:10], paste0("c", 1:9))) > a[a < 7.5] <- 0 > (A <- Matrix(a))# first column = all zeros 10 x 9 sparse Matrix of class "dgCMatrix" c1 c2 c3 c4 c5 c6 c7 c8 c9 A . . 9 . . . . . 9 B . . . . . 9 . . . C . . 8 . . . . . . D . . . 9 . . . . . E . . . . . . 8 . . F . . . . . . 8 . . G . . 8 8 . . . . 8 H . . . 10 . . . 10 . I . . 8 . . . . . . J . 8 . . 8 . . . . > qD <- chkQR(a, giveRE=TRUE) ## using base qr Mean relative difference: 4.60537e-16 Mean relative difference: 3.302202e-16 Mean relative difference: 6.056655e-16 Mean relative difference: 7.322761e-16 Mean relative difference: 6.056655e-16 Mean relative difference: 8.208748e-16 > qS <- chkQR(A, giveRE=TRUE) ## using Matrix "sparse qr" -- "structurally rank deficient! is sparse *structurally* rank deficient: Qinv.chk=FALSE, QtQ.chk=FALSE Mean relative difference: 6.18072e-16 Mean relative difference: 6.18072e-16 Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 2 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 2 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 2 row(s) of zeros 4: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 2 row(s) of zeros 5: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 2 row(s) of zeros > validObject(qS)# with the validity now (2012-11-18) -- ok, also for "bad" case [1] TRUE > ## Here, have illegal access Up[-1] in ../src/cs.c > try( ## After patch (2016-10-04 - *NOT* committed), this fails + ## definitely "fails" (with good singularity message) after c3194 (cs.c): + chk.qr.D.S(qD, qS, y = 10 + 1:nrow(A), force=TRUE)# 6 warnings: "structurally rank deficient" + ) Error in chk.qr.D.S(qD, qS, y = 10 + 1:nrow(A), force = TRUE) : is.all.equal3(cc, qr.coef(s., y), drop(qr.coef(s., Y)), tol = tol) is not TRUE In addition: Warning message: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 2 row(s) of zeros > try( ## NOTE: *Both* checks currently fail here: + chkQR(A, Qinv.chk=TRUE, QtQ.chk=TRUE) + ) Error in assert.EQ(drop(qr.qy(a.qr, qr.qty(a.qr, y))), y, giveRE = giveRE, : all.equal() |-> names for target but not for current Mean relative difference: 0.2131411 In addition: Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 2 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 2 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 2 row(s) of zeros > > > ## Larger Scale random testing > oo <- options(Matrix.quiet.qr.R = TRUE, Matrix.verbose = TRUE, nwarnings = 1e4) > set.seed(101) > > quiet <- doExtras > for(N in 1:(if(doExtras) 1008 else 24)) { + A <- rsparsematrix(8,5, nnz = rpois(1, lambda=16)) + cat(sprintf(if(quiet) "%d " else "%4d -", N)); if(quiet && N %% 50 == 0) cat("\n") + checkQR.DS.both(A, Qinv.chk= NA, QtQ.chk=NA, quiet=quiet, + ## --- => FALSE if struct. rank deficient + giveRE = FALSE, tol = 1e-12) + ## with doExtras = TRUE, 64bit (F34, R 4.3.0-dev. 2022-05): seen 8.188e-13 + } 1 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 2 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 3 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 4 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 5 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 6 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 7 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 8 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 9 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 10 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 11 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 12 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 13 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 14 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 15 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 16 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 17 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 18 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 19 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 20 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 21 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 22 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 23 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 24 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] There were 35 warnings (use warnings() to see them) > summary(warnings()) Summary of (a total of 35) warning messages: 6x : In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 24x : In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 1x : In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 2 row(s) of zeros 4x : In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 2 row(s) of zeros > > ## Look at single "hard" cases: -------------------------------------- > > ## This is *REALLY* nice and small : > A0 <- new("dgCMatrix", Dim = 4:3, i = c(0:3, 3L), p = c(0L, 3:5), x = rep(1,5)) > A0 4 x 3 sparse Matrix of class "dgCMatrix" [1,] 1 . . [2,] 1 . . [3,] 1 . . [4,] . 1 1 > checkQR.DS.both(A0, Qinv.chk = FALSE, QtQ.chk=FALSE) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 2.220446e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 1.110223e-16 Mean relative difference: 2.775558e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 1.110223e-16 Mean relative difference: 3.191891e-16 [Ok] --- sparse: complete = FALSE: checking X = Q R P* Mean relative difference: 1.110223e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 1.110223e-16 [Ok] Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 4: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 5: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > ## ----- *both* still needed : > try( checkQR.DS.both(A0, TRUE, FALSE) ) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 2.220446e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 1.110223e-16 Mean relative difference: 2.775558e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 1.110223e-16 Mean relative difference: 3.191891e-16 [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Error in assert.EQ(drop(qr.qy(a.qr, qr.qty(a.qr, y))), y, giveRE = giveRE, : all.equal() |-> Mean relative difference: 0.09622504 In addition: Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > try( checkQR.DS.both(A0, FALSE, TRUE) ) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 2.220446e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 1.110223e-16 Mean relative difference: 2.775558e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 1.110223e-16 Mean relative difference: 3.191891e-16 [Ok] --- sparse: complete = FALSE: checking X = Q R P* Mean relative difference: 1.110223e-16 Error in assert.EQ(MM, m, tol = tol, showOnly = showOnly, giveRE = giveRE) : all.equal() |-> Mean relative difference: 1 In addition: Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > > ## and the same when dropping the first row { --> 3 x 3 }: > A1 <- A0[-1 ,] > checkQR.DS.both(A1, Qinv.chk = FALSE, QtQ.chk=FALSE) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 4.440892e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 4.440892e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 4.440892e-16 [Ok] --- sparse: complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 4: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 5: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > ## ----- *both* still needed : > try( checkQR.DS.both(A1, TRUE, FALSE) ) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 4.440892e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 4.440892e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 4.440892e-16 [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Error in assert.EQ(drop(qr.qy(a.qr, qr.qty(a.qr, y))), y, giveRE = giveRE, : all.equal() |-> Mean relative difference: 0.3333333 In addition: Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > try( checkQR.DS.both(A1, FALSE, TRUE) ) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 4.440892e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 4.440892e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 4.440892e-16 [Ok] --- sparse: complete = FALSE: checking X = Q R P* Error in assert.EQ(MM, m, tol = tol, showOnly = showOnly, giveRE = giveRE) : all.equal() |-> Mean relative difference: 1 In addition: Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > > > qa <- qr(as(A0,"matrix")) > qA <- qr(A0) # -> message: ".. Matrix structurally rank deficient" Warning message: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > > drop0(crossprod( Qd <- qr.Q(qa) ), 1e-15) # perfect = diag( 3 ) 3 x 3 sparse Matrix of class "dsCMatrix" [1,] 1 . . [2,] . 1 . [3,] . . 1 > drop0(crossprod( Qs <- qr.Q(qA) ), 1e-15) # R[3,3] == 0 -- OOPS! 3 x 3 sparse Matrix of class "dsCMatrix" [1,] 1 . . [2,] . 1 . [3,] . . . Warning message: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > ## OTOH, qr.R() is fine, as checked in the checkQR.DS.both(A0, *) above > > > ## zero-row *and* zero-column : > (A2 <- new("dgCMatrix", i = c(0L, 1L, 4L, 7L, 5L, 2L, 4L) + , p = c(0L, 3L, 4L, 4L, 5L, 7L) + , Dim = c(8L, 5L) + , x = c(0.92, 1.06, -1.74, 0.74, 0.19, -0.63, 0.68))) 8 x 5 sparse Matrix of class "dgCMatrix" [1,] 0.92 . . . . [2,] 1.06 . . . . [3,] . . . . -0.63 [4,] . . . . . [5,] -1.74 . . . 0.68 [6,] . . . 0.19 . [7,] . . . . . [8,] . 0.74 . . . > checkQR.DS.both(A2, Qinv.chk = FALSE, QtQ.chk=FALSE) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 3.757678e-16 Mean relative difference: 5.551115e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 1.790682e-16 Mean relative difference: 6.661338e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 1.790682e-16 Mean relative difference: 9.992007e-16 [Ok] --- sparse: complete = FALSE: checking X = Q R P* Mean relative difference: 6.637203e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 6.637203e-16 [Ok] Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 4: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 5: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > ## ----- *both* still needed : > try( checkQR.DS.both(A2, TRUE, FALSE) ) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 3.757678e-16 Mean relative difference: 5.551115e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 1.790682e-16 Mean relative difference: 6.661338e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 1.790682e-16 Mean relative difference: 9.992007e-16 [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Error in assert.EQ(drop(qr.qy(a.qr, qr.qty(a.qr, y))), y, giveRE = giveRE, : all.equal() |-> Mean relative difference: 0.875 In addition: Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > try( checkQR.DS.both(A2, FALSE, TRUE) ) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 3.757678e-16 Mean relative difference: 5.551115e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 1.790682e-16 Mean relative difference: 6.661338e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 1.790682e-16 Mean relative difference: 9.992007e-16 [Ok] --- sparse: complete = FALSE: checking X = Q R P* Mean relative difference: 6.637203e-16 Error in assert.EQ(MM, m, tol = tol, showOnly = showOnly, giveRE = giveRE) : all.equal() |-> Mean absolute difference: 0.3333333 In addition: Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > > > ## Case of *NO* zero-row or zero-column: > (A3 <- new("dgCMatrix", Dim = 6:5 + , i = c(0L, 2L, 4L, 0L, 1L, 5L, 1L, 3L, 0L) + , p = c(0L, 1L, 3L, 6L, 8L, 9L) + , x = c(40, -54, -157, -28, 75, 166, 134, 3, -152))) 6 x 5 sparse Matrix of class "dgCMatrix" [1,] 40 . -28 . -152 [2,] . . 75 134 . [3,] . -54 . . . [4,] . . . 3 . [5,] . -157 . . . [6,] . . 166 . . > checkQR.DS.both(A3, Qinv.chk = FALSE, QtQ.chk=FALSE) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 4.440892e-16 Mean relative difference: 4.440892e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 6.136406e-16 Mean relative difference: 3.091163e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 6.136406e-16 Mean relative difference: 4.87797e-16 [Ok] --- sparse: complete = FALSE: checking X = Q R P* Mean relative difference: 1.143119e-15 complete = TRUE: checking X = Q R P* Mean relative difference: 1.143119e-15 [Ok] Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 4: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 5: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > ## ----- *both* still needed : > try( checkQR.DS.both(A3, TRUE, FALSE) ) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 4.440892e-16 Mean relative difference: 4.440892e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 6.136406e-16 Mean relative difference: 3.091163e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 6.136406e-16 Mean relative difference: 4.87797e-16 [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Error in assert.EQ(drop(qr.qy(a.qr, qr.qty(a.qr, y))), y, giveRE = giveRE, : all.equal() |-> Mean relative difference: 0.2579847 In addition: Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > try( checkQR.DS.both(A3, FALSE, TRUE) ) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 4.440892e-16 Mean relative difference: 4.440892e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 6.136406e-16 Mean relative difference: 3.091163e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 6.136406e-16 Mean relative difference: 4.87797e-16 [Ok] --- sparse: complete = FALSE: checking X = Q R P* Mean relative difference: 1.143119e-15 Error in assert.EQ(MM, m, tol = tol, showOnly = showOnly, giveRE = giveRE) : all.equal() |-> Mean relative difference: 0.3333333 In addition: Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > > > > (A4 <- new("dgCMatrix", Dim = c(7L, 5L) + , i = c(1:2, 4L, 6L, 1L, 5L, 0:3, 0L, 2:4) + , p = c(0L, 4L, 6L, 10L, 10L, 14L) + , x = c(9, -8, 1, -9, 1, 10, -1, -2, 6, 14, 10, 2, 12, -9))) 7 x 5 sparse Matrix of class "dgCMatrix" [1,] . . -1 . 10 [2,] 9 1 -2 . . [3,] -8 . 6 . 2 [4,] . . 14 . 12 [5,] 1 . . . -9 [6,] . 10 . . . [7,] -9 . . . . > checkQR.DS.both(A4, Qinv.chk = FALSE, QtQ.chk=FALSE) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 3.089316e-16 Mean relative difference: 3.505967e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 5.298712e-16 Mean relative difference: 6.328271e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 5.298712e-16 Mean relative difference: 7.811212e-16 [Ok] --- sparse: complete = FALSE: checking X = Q R P* Mean relative difference: 4.234339e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 4.234339e-16 [Ok] Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 4: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 5: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > ## ----- *both* still needed : > try( checkQR.DS.both(A4, TRUE, FALSE) ) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 3.089316e-16 Mean relative difference: 3.505967e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 5.298712e-16 Mean relative difference: 6.328271e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 5.298712e-16 Mean relative difference: 7.811212e-16 [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Error in assert.EQ(drop(qr.qy(a.qr, qr.qty(a.qr, y))), y, giveRE = giveRE, : all.equal() |-> Mean relative difference: 0.3289631 In addition: Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > try( checkQR.DS.both(A4, FALSE, TRUE) ) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 3.089316e-16 Mean relative difference: 3.505967e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 5.298712e-16 Mean relative difference: 6.328271e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 5.298712e-16 Mean relative difference: 7.811212e-16 [Ok] --- sparse: complete = FALSE: checking X = Q R P* Mean relative difference: 4.234339e-16 Error in assert.EQ(MM, m, tol = tol, showOnly = showOnly, giveRE = giveRE) : all.equal() |-> Mean relative difference: 0.3333333 In addition: Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > > (A5 <- new("dgCMatrix", Dim = c(4L, 4L) + , i = c(2L, 2L, 0:1, 0L, 2:3), p = c(0:2, 4L, 7L) + , x = c(48, 242, 88, 18, -167, -179, 18))) 4 x 4 sparse Matrix of class "dgCMatrix" [1,] . . 88 -167 [2,] . . 18 . [3,] 48 242 . -179 [4,] . . . 18 > checkQR.DS.both(A5, Qinv.chk = FALSE, QtQ.chk=FALSE) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 5.921189e-16 Mean relative difference: 3.552714e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 2.732857e-16 Mean relative difference: 3.700743e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 2.732857e-16 Mean relative difference: 3.700743e-16 [Ok] --- sparse: complete = FALSE: checking X = Q R P* Mean absolute difference: 7.105427e-15 complete = TRUE: checking X = Q R P* Mean absolute difference: 7.105427e-15 [Ok] Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 4: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 5: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > ## ----- *both* still needed : > try( checkQR.DS.both(A5, TRUE, FALSE) ) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 5.921189e-16 Mean relative difference: 3.552714e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 2.732857e-16 Mean relative difference: 3.700743e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 2.732857e-16 Mean relative difference: 3.700743e-16 [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Error in assert.EQ(drop(qr.qy(a.qr, qr.qty(a.qr, y))), y, giveRE = giveRE, : all.equal() |-> Mean relative difference: 0.6884769 In addition: Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > try( checkQR.DS.both(A5, FALSE, TRUE) ) classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : Mean relative difference: 5.921189e-16 Mean relative difference: 3.552714e-16 complete = FALSE: checking X = Q R P* Mean relative difference: 2.732857e-16 Mean relative difference: 3.700743e-16 complete = TRUE: checking X = Q R P* Mean relative difference: 2.732857e-16 Mean relative difference: 3.700743e-16 [Ok] --- sparse: complete = FALSE: checking X = Q R P* Mean absolute difference: 7.105427e-15 Error in assert.EQ(MM, m, tol = tol, showOnly = showOnly, giveRE = giveRE) : all.equal() |-> Mean relative difference: 1 In addition: Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > > > quiet <- doExtras > for(N in 1:(if(doExtras) 2^12 else 128)) { + A <- round(100*rsparsematrix(5,3, nnz = min(15,rpois(1, lambda=10)))) + if(any(apply(A, 2, function(x) all(x == 0)))) ## "column of all 0" + next + cat(sprintf(if(quiet) "%d " else "%4d -", N)); if(quiet && N %% 50 == 0) cat("\n") + checkQR.DS.both(A, Qinv.chk=NA, giveRE=FALSE, tol = 1e-12, quiet = quiet) + ## --- => FALSE if struct. rank deficient + } 1 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 2 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 3 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 4 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 5 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 6 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 7 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 8 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 9 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 10 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 11 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 12 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 13 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 14 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 15 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 16 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 17 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 18 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 19 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 21 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 22 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 24 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 25 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 26 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 28 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 29 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 30 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 31 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 32 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 34 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 35 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 37 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 38 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 39 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 40 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 41 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 42 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 43 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 44 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 45 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 46 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 47 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 48 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 49 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 50 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 51 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 52 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 53 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 54 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 55 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 56 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 57 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 58 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 59 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 60 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 61 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 62 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 63 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 64 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 65 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 66 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 67 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 68 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 69 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 70 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 71 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 72 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 73 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 74 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 75 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 76 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 77 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 78 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 79 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 80 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 81 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 82 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 83 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 84 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 85 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 86 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 87 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 88 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 89 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 90 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 91 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 92 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 93 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 94 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 95 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 96 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 97 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 98 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 99 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 100 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 101 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 102 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 103 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 104 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 105 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 106 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 107 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 108 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 109 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 110 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 111 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 112 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 113 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 114 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 115 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 116 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 117 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 118 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 119 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 120 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 121 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 122 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 123 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 124 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 126 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 127 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] 128 -classical: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] --- sparse: Qinv.chk=TRUE: checking Q'Q y = y = QQ' y : complete = FALSE: checking X = Q R P* complete = TRUE: checking X = Q R P* [Ok] Warning messages: 1: In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 2: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 3: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 4: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 5: In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > > summary(warnings()) Summary of (a total of 5) warning messages: 1x : In .qr.rank.def.warn(r) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros 4x : In .qr.rank.def.warn(qr) : matrix is structurally rank deficient; using augmented matrix with additional 1 row(s) of zeros > > > options(oo) > > > > ### "denseLU" > > ## Testing expansions of factorizations {was ./expand.R, then in simple.R } > ## new: [m x n] where m and n may differ > x. <- c(2^(0:5),9:1,-3:8, round(sqrt(0:16))) > set.seed(1) > for(nnn in 1:100) { + y <- sample(x., replace=TRUE) + m <- sample(2:6, 1) + n <- sample(2:7, 1) + x <- matrix(seq_len(m*n), m,n) + lux <- lu(x)# occasionally a warning about exact singularity + xx <- with(expand(lux), (P %*% L %*% U)) + print(dim(xx)) + assert.EQ.mat(xx, x, tol = 16*.Machine$double.eps) + } [1] 4 6 [1] 3 2 [1] 4 5 [1] 6 5 [1] 4 7 [1] 3 3 [1] 5 3 [1] 2 6 [1] 5 6 [1] 5 2 [1] 4 7 [1] 6 5 [1] 4 4 [1] 6 3 [1] 2 7 [1] 5 3 [1] 6 6 [1] 3 4 [1] 6 3 [1] 5 7 [1] 3 3 [1] 6 5 [1] 5 4 [1] 4 2 [1] 6 2 [1] 3 7 [1] 3 5 [1] 3 6 [1] 2 4 [1] 2 5 [1] 4 2 [1] 3 6 [1] 5 4 [1] 6 2 [1] 3 2 [1] 6 6 [1] 5 6 [1] 3 7 [1] 2 5 [1] 6 2 [1] 6 3 [1] 2 4 [1] 5 2 [1] 4 2 [1] 6 2 [1] 3 3 [1] 5 7 [1] 4 4 [1] 4 3 [1] 3 7 [1] 5 7 [1] 3 5 [1] 5 5 [1] 6 2 [1] 3 7 [1] 6 7 [1] 3 3 [1] 3 6 [1] 2 5 [1] 4 2 [1] 3 7 [1] 4 7 [1] 4 7 [1] 2 5 [1] 6 6 [1] 6 4 [1] 5 4 [1] 5 7 [1] 2 3 [1] 5 6 [1] 6 2 [1] 5 7 [1] 6 7 [1] 3 6 [1] 3 5 [1] 6 5 [1] 2 2 [1] 6 4 [1] 4 4 [1] 3 2 [1] 6 3 [1] 5 5 [1] 2 2 [1] 4 7 [1] 2 3 [1] 2 2 [1] 2 5 [1] 5 6 [1] 3 4 [1] 5 5 [1] 2 3 [1] 3 6 [1] 2 4 [1] 3 4 [1] 5 6 [1] 3 5 [1] 5 5 [1] 3 3 [1] 2 4 [1] 4 4 There were 50 or more warnings (use warnings() to see the first 50) > > ### "sparseLU" > por1 <- readMM(system.file("external/pores_1.mtx", package = "Matrix")) > lu1 <- lu(por1) > pm <- as(por1, "CsparseMatrix") > (pmLU <- lu(pm)) # -> show() LU factorization of Formal class 'sparseLU' [package "Matrix"] with 6 slots ..@ L :Formal class 'dtCMatrix' [package "Matrix"] with 7 slots .. .. ..@ i : int [1:141] 0 1 18 22 25 26 1 18 22 25 ... .. .. ..@ p : int [1:31] 0 6 11 13 16 19 22 26 31 35 ... .. .. ..@ Dim : int [1:2] 30 30 .. .. ..@ Dimnames:List of 2 .. .. .. ..$ : NULL .. .. .. ..$ : NULL .. .. ..@ x : num [1:141] 1 -0.993819 -0.004979 -0.000132 0.000132 ... .. .. ..@ uplo : chr "L" .. .. ..@ diag : chr "N" ..@ U :Formal class 'dtCMatrix' [package "Matrix"] with 7 slots .. .. ..@ i : int [1:206] 0 0 1 2 2 3 2 4 2 3 ... .. .. ..@ p : int [1:31] 0 1 3 4 6 8 12 15 20 25 ... .. .. ..@ Dim : int [1:2] 30 30 .. .. ..@ Dimnames:List of 2 .. .. .. ..$ : NULL .. .. .. ..$ : NULL .. .. ..@ x : num [1:206] -7178502 -24613411 -18311731 -6399179 715 ... .. .. ..@ uplo : chr "U" .. .. ..@ diag : chr "N" ..@ p : int [1:30] 1 11 29 27 19 28 9 18 17 7 ... ..@ q : int [1:30] 0 1 29 27 19 28 9 18 17 8 ... ..@ Dim : int [1:2] 30 30 ..@ Dimnames:List of 2 .. ..$ : NULL .. ..$ : NULL > xp <- expand(pmLU) > ## permute rows and columns of original matrix > ppm <- pm[pmLU@p + 1:1, pmLU@q + 1:1] > Ppm <- pmLU@L %*% pmLU@U > ## identical only as long as we don't keep the original class info: > stopifnot(identical3(lu1, pmLU, pm@factors$sparseLU),# TODO === por1@factors$LU + identical(ppm, with(xp, P %*% pm %*% t(Q))), + sapply(xp, is, class2="Matrix")) > > Ipm <- solve(pm, sparse=FALSE) > Spm <- solve(pm, sparse=TRUE) # is not sparse at all, here > assert.EQ.Mat(Ipm, Spm, giveRE=TRUE, tol = 1e-13)# seen 7.36e-15 only on 32-bit > stopifnot(abs(as.vector(solve(Diagonal(30, x=10) %*% pm) / Ipm) - 1/10) < 1e-7, + abs(as.vector(solve(rep.int(4, 30) * pm) / Ipm) - 1/ 4) < 1e-7) > > ## these two should be the same, and `are' in some ways: > assert.EQ.mat(ppm, as(Ppm, "matrix"), tol = 1e-14, giveRE=TRUE) Mean relative difference: 3.426772e-16 > ## *however* > length(ppm@x)# 180 [1] 180 > length(Ppm@x)# 317 ! [1] 317 > table(Ppm@x == 0)# (194, 123) - has 123 "zero" and 14 ``almost zero" entries FALSE TRUE 194 123 > > ##-- determinant() and det() --- working via LU --- > m <- matrix(c(0, NA, 0, NA, NA, 0, 0, 0, 1), 3,3) > m0 <- rbind(0,cbind(0,m)) > M <- as(m,"Matrix"); M ## "dsCMatrix" ... 3 x 3 sparse Matrix of class "dsCMatrix" [1,] . NA . [2,] NA NA . [3,] . . 1 > M0 <- rbind(0, cbind(0, M)) > dM <- as(M, "denseMatrix") > dM0 <- as(M0,"denseMatrix") > try( lum <- lu(M) )# Err: "near-singular A" Error in .local(x, ...) : LU factorization of .gCMatrix failed: out of memory or near-singular > (lum <- lu(M, errSing=FALSE))# NA --- *BUT* it is not stored in @factors [1] NA > (lum0 <- lu(M0, errSing=FALSE))# NA --- and it is stored in M0@factors[["LU"]] [1] NA > ## "FIXME" - TODO: Consider > replNA <- function(x, value) { x[is.na(x)] <- value ; x } > (EL.1 <- expand(lu.1 <- lu(M.1 <- replNA(M, -10)))) $P 3 x 3 sparse Matrix of class "pMatrix" [1,] . | . [2,] | . . [3,] . . | $L 3 x 3 sparse Matrix of class "dtCMatrix" [1,] 1 . . [2,] . 1 . [3,] . . 1 $U 3 x 3 sparse Matrix of class "dtCMatrix" [1,] -10 -10 . [2,] . -10 . [3,] . . 1 $Q 3 x 3 sparse Matrix of class "pMatrix" [1,] | . . [2,] . | . [3,] . . | > ## so it's quite clear how lu() of the *singular* matrix M should work > ## but it's not supported by the C code in ../src/cs.c which errors out > stopifnot(all.equal(M.1, with(EL.1, t(P) %*% L %*% U %*% Q)), + is.na(det(M)), is.na(det(dM)), + is.na(det(M0)), is.na(det(dM0)) ) Warning message: In .local(A, ...) : CHOLMOD warning 'not positive definite' at file '../Cholesky/t_cholmod_rowfac.c', line 430 > > ###________ Cholesky() ________ > > ##-------- LDL' ---- small exact examples > > set.seed(1) > for(n in c(5:12)) { + cat("\nn = ",n,"\n-------\n") + rr <- mkLDL(n) + ## -------- from 'test-tools.R' + stopifnot(all(with(rr, A == + as(L %*% D %*% t(L), "symmetricMatrix"))), + all(with(rr, A == tcrossprod(L %*% sqrt(D))))) + d <- rr$d.half + A <- rr$A + .A <- as(A, "TsparseMatrix") # 'factors' slot is retained => do chol() _after_ coercion + R <- chol(A) + assert.EQ.Mat(R, chol(.A)) # gave infinite recursion + print(d. <- diag(R)) + D. <- Diagonal(x= d.^2) + L. <- t(R) %*% Diagonal(x = 1/d.) + stopifnot(all.equal(as.matrix(D.), as.matrix(rr$ D)), + all.equal(as.matrix(L.), as.matrix(rr$ L))) + ## + CAp <- Cholesky(A)# perm=TRUE --> Permutation: + validObject(CAp) + p <- CAp@perm + 1L + P <- as(p, "pMatrix") + ## the inverse permutation: + invP <- solve(P)@perm + lDet <- sum(2* log(d))# the "true" value + ldetp <- .diag.dsC(Chx = CAp, res.kind = "sumLog") + ldetp. <- sum(log(.diag.dsC(Chx = CAp, res.kind = "diag") )) + ## + CA <- Cholesky(A,perm=FALSE) + validObject(CA) + ldet <- .diag.dsC(Chx = CA, res.kind = "sumLog") + ## not printing CAp : ends up non-integer for n >= 11 + mCAp <- as(CAp, "CsparseMatrix") + print(mCA <- drop0(as(CA, "CsparseMatrix"))) + stopifnot(identical(A[p,p], as(P %*% A %*% t(P), + "symmetricMatrix")), + relErr(d.^2, .diag.dsC(Chx= CA, res.kind="diag")) < 1e-14, + relErr(A[p,p], tcrossprod(mCAp)) < 1e-14) + if(FALSE) + rbind(lDet,ldet, ldetp, ldetp.) + ## ==> Empirically, I see lDet = ldet != ldetp == ldetp. + ## if(rr$rcond.A < ...) warning("condition number of A ..." ## <- TODO + cat(1,""); assert.EQ.(lDet, ldet, tol = 1e-14) + cat(2,""); assert.EQ.(ldetp, ldetp., tol = 1e-14) + cat(3,""); assert.EQ.(lDet, ldetp, tol = n^2* 1e-7)# extreme: have seen 0.0011045 !! + }## for() n = 5 ------- [1] 20 50 40 30 10 5 x 5 sparse Matrix of class "dtCMatrix" [1,] 20 . . . . [2,] 100 50 . . . [3,] . . 40 . . [4,] 140 . 160 30 . [5,] 120 . . . 10 1 2 Mean relative difference: 2.179523e-16 3 Mean relative difference: 2.179523e-16 n = 6 ------- [1] 30 40 20 60 50 10 6 x 6 sparse Matrix of class "dtCMatrix" [1,] 30 . . . . . [2,] . 40 . . . . [3,] . 240 20 . . . [4,] . . . 60 . . [5,] 150 360 . . 50 . [6,] . 280 . 600 . 10 1 Mean relative difference: 1.741974e-16 2 3 n = 7 ------- [1] 50 30 10 40 60 20 70 7 x 7 sparse Matrix of class "dtCMatrix" [1,] 50 . . . . . . [2,] . 30 . . . . . [3,] . . 10 . . . . [4,] . . 130 40 . . . [5,] . . . . 60 . . [6,] . . 20 480 480 20 . [7,] . . . . . . 70 1 Mean relative difference: 1.441658e-16 2 3 n = 8 ------- [1] 10 80 20 30 50 60 40 70 8 x 8 sparse Matrix of class "dtCMatrix" [1,] 10 . . . . . . . [2,] . 80 . . . . . . [3,] . . 20 . . . . . [4,] . . 320 30 . . . . [5,] 70 . 40 150 50 . . . [6,] . . . 30 850 60 . . [7,] . . . . . 600 40 . [8,] . 320 . . . . 440 70 1 2 Mean relative difference: 1.224007e-16 3 Mean relative difference: 1.980492e-11 n = 9 ------- [1] 30 70 20 50 10 60 40 90 80 9 x 9 sparse Matrix of class "dtCMatrix" [1,] 30 . . . . . . . . [2,] . 70 . . . . . . . [3,] . . 20 . . . . . . [4,] . . 420 50 . . . . . [5,] . . . 300 10 . . . . [6,] 780 980 . . . 60 . . . [7,] . . 540 . . . 40 . . [8,] . . 200 . 130 60 120 90 . [9,] 450 . . 250 80 . 160 1980 80 1 2 3 Mean relative difference: 1.857049e-12 n = 10 ------- [1] 70 90 40 80 20 100 60 50 10 30 10 x 10 sparse Matrix of class "dtCMatrix" [1,] 70 . . . . . . . . . [2,] . 90 . . . . . . . . [3,] . . 40 . . . . . . . [4,] 280 2430 . 80 . . . . . . [5,] . 1620 . 2000 20 . . . . . [6,] 2030 . 960 . 220 100 . . . . [7,] . . . . . 200 60 . . . [8,] 210 . . 2080 . . . 50 . . [9,] 1400 . . 1360 180 . . . 10 . [10,] . 2700 . . . 100 1260 . 100 30 1 Mean relative difference: 1.863461e-16 2 3 Mean relative difference: 3.64493e-13 n = 11 ------- [1] 50 80 100 40 10 30 90 20 110 60 70 11 x 11 sparse Matrix of class "dtCMatrix" [1,] 50 . . . . . . . . . . [2,] . 80 . . . . . . . . . [3,] . . 100 . . . . . . . . [4,] . . 2800 40 . . . . . . . [5,] . . . . 10 . . . . . . [6,] . 2560 . . 340 30 . . . . . [7,] . . 2200 . . 1110 90 . . . . [8,] . . . 760 . 1200 . 20 . . . [9,] 1950 . 2600 . . . 1620 . 110 . . [10,] . 1040 . . . . . 100 . 60 . [11,] 1000 720 . . . . 360 . . . 70 1 Mean relative difference: 1.658955e-16 2 3 Mean relative difference: 2.296093e-10 n = 12 ------- [1] 120 100 40 60 80 70 30 20 10 110 50 90 12 x 12 sparse Matrix of class "dtCMatrix" [1,] 120 . . . . . . . . . . . [2,] . 100 . . . . . . . . . . [3,] . . 40 . . . . . . . . . [4,] . . 1280 60 . . . . . . . . [5,] . 2300 . . 80 . . . . . . . [6,] . 1900 1520 2040 . 70 . . . . . . [7,] 360 700 . . . . 30 . . . . . [8,] . . . . 1920 . . 20 . . . . [9,] . . . . 1120 . . 220 10 . . . [10,] . . . . 2880 . . . . 110 . . [11,] 5640 . 1480 . 320 2030 . . . . 50 . [12,] . . . . . . 1170 . . 550 2000 90 1 Mean relative difference: 1.492165e-16 2 Mean relative difference: 2.98433e-16 3 Mean relative difference: 2.671423e-12 > > mkCholhash <- function(r.all) { + ## r.all %*% (2^(2:0)), but only those that do not have NA / "?" : + stopifnot(is.character(rn <- rownames(r.all)), + is.matrix(r.all), is.logical(r.all)) + c.rn <- vapply(rn, function(ch) strsplit(ch, " ")[[1]], character(3)) + ## Now + h1 <- function(i) { + ok <- rep.int(TRUE, 3L) + if(c.rn[3L, i] == "?") + ok[2:3] <- FALSE # no supernodal LDL' factorization !! + r.all[i, ok] %*% 2^((2:0)[ok]) + } + vapply(seq_len(nrow(r.all)), h1, numeric(1)) + } > > set.seed(17) > (rr <- mkLDL(4)) $A 4 x 4 sparse Matrix of class "dsCMatrix" [1,] 100 . 300 . [2,] . 900 900 . [3,] 300 900 3400 . [4,] . . . 400 $L 4 x 4 sparse Matrix of class "dtCMatrix" [1,] 1 . . . [2,] . 1 . . [3,] 3 1 1 . [4,] . . . 1 $d.half [1] 10 30 40 20 $D 4 x 4 diagonal matrix of class "ddiMatrix" [,1] [,2] [,3] [,4] [1,] 100 . . . [2,] . 900 . . [3,] . . 1600 . [4,] . . . 400 $rcond.A [1] 0.0112202 $cond.A NULL > (CA <- Cholesky(rr$A)) Cholesky factorization of Formal class 'dCHMsimpl' [package "Matrix"] with 11 slots ..@ x : num [1:6] 900 1 100 3 1600 400 ..@ p : int [1:5] 0 2 4 5 6 ..@ i : int [1:6] 0 2 1 2 2 3 ..@ nz : int [1:4] 2 2 1 1 ..@ nxt : int [1:6] 1 2 3 4 -1 0 ..@ prv : int [1:6] 5 0 1 2 3 -1 ..@ type : int [1:6] 2 0 0 1 0 0 ..@ colcount: int [1:4] 2 2 1 1 ..@ perm : int [1:4] 1 0 2 3 ..@ Dim : int [1:2] 4 4 ..@ Dimnames:List of 2 .. ..$ : NULL .. ..$ : NULL > validObject(CA) [1] TRUE > stopifnot(all.equal(determinant(rr$A) -> detA, + determinant(as(rr$A, "matrix"))), + is.all.equal3(c(detA$modulus), log(det(rr$D)), sum(log(rr$D@x)))) > A12 <- mkLDL(12, 1/10) > (r12 <- allCholesky(A12$A))[-1] Warning in allCholesky(A12$A) : duplicated( ) differs from duplicated( ) $dup.r.all [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE $r.all p L s perm LDL super . . . FALSE FALSE FALSE | . . TRUE FALSE FALSE . | . FALSE TRUE FALSE | | . TRUE TRUE FALSE . . | FALSE FALSE TRUE | . | TRUE FALSE TRUE . | | FALSE FALSE TRUE | | | TRUE FALSE TRUE . . ? FALSE FALSE FALSE | . ? TRUE FALSE FALSE . | ? FALSE TRUE FALSE | | ? TRUE TRUE FALSE $r.uniq p L s perm LDL super . . . FALSE FALSE FALSE | . . TRUE FALSE FALSE . | . FALSE TRUE FALSE | | . TRUE TRUE FALSE . . | FALSE FALSE TRUE | . | TRUE FALSE TRUE > aCh.hash <- mkCholhash(r12$r.all) > if(requireNamespace("sfsmisc")) + split(rownames(r12$r.all), sfsmisc::Duplicated(aCh.hash)) Loading required namespace: sfsmisc $`1` [1] ". . |" ". | |" $`2` [1] "| . |" "| | |" $`3` [1] ". . ." ". . ?" ". | ?" $`4` [1] "| . ." "| . ?" "| | ?" > > ## TODO: find cases for both choices when we leave it to CHOLMOD to choose > for(n in 1:50) { ## used to seg.fault at n = 10 ! + mkA <- mkLDL(1+rpois(1, 30), 1/10, rcond = FALSE, condest = FALSE) + cat(sprintf("n = %3d, LDL-dim = %d x %d ", n, nrow(mkA$A), ncol(mkA$A))) + r <- allCholesky(mkA$A, silentTry=TRUE) + ## Compare .. apart from the NAs that happen from (perm=FALSE, super=TRUE) + iNA <- apply(is.na(r$r.all), 1, any) + cat(sprintf(" -> %3s NAs\n", if(any(iNA)) format(sum(iNA)) else "no")) + stopifnot(aCh.hash[!iNA] == mkCholhash(r$r.all[!iNA,])) + ## cat("--------\n") + } n = 1, LDL-dim = 27 x 27 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 2, LDL-dim = 27 x 27 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 3, LDL-dim = 23 x 23 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 4, LDL-dim = 25 x 25 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 5, LDL-dim = 32 x 32 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 6, LDL-dim = 43 x 43 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 6 NAs n = 7, LDL-dim = 34 x 34 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 3 NAs n = 8, LDL-dim = 28 x 28 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 9, LDL-dim = 33 x 33 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 10, LDL-dim = 32 x 32 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 11, LDL-dim = 32 x 32 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 12, LDL-dim = 33 x 33 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 4 NAs n = 13, LDL-dim = 35 x 35 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 14, LDL-dim = 35 x 35 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 4 NAs n = 15, LDL-dim = 30 x 30 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 1 NAs n = 16, LDL-dim = 36 x 36 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 1 NAs n = 17, LDL-dim = 29 x 29 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 18, LDL-dim = 35 x 35 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 19, LDL-dim = 32 x 32 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 2 NAs n = 20, LDL-dim = 25 x 25 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 21, LDL-dim = 46 x 46 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 1 NAs n = 22, LDL-dim = 28 x 28 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 23, LDL-dim = 28 x 28 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 24, LDL-dim = 41 x 41 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 4 NAs n = 25, LDL-dim = 31 x 31 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 2 NAs n = 26, LDL-dim = 34 x 34 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 27, LDL-dim = 31 x 31 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 28, LDL-dim = 33 x 33 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 29, LDL-dim = 44 x 44 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 3 NAs n = 30, LDL-dim = 33 x 33 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 31, LDL-dim = 31 x 31 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 2 NAs n = 32, LDL-dim = 33 x 33 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 33, LDL-dim = 34 x 34 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 34, LDL-dim = 32 x 32 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 35, LDL-dim = 28 x 28 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 36, LDL-dim = 27 x 27 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 37, LDL-dim = 26 x 26 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 38, LDL-dim = 32 x 32 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 39, LDL-dim = 28 x 28 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 40, LDL-dim = 27 x 27 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 41, LDL-dim = 23 x 23 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 42, LDL-dim = 39 x 39 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 6 NAs n = 43, LDL-dim = 23 x 23 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 44, LDL-dim = 48 x 48 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 6 NAs n = 45, LDL-dim = 31 x 31 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 46, LDL-dim = 37 x 37 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 47, LDL-dim = 34 x 34 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 1 NAs n = 48, LDL-dim = 24 x 24 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs n = 49, LDL-dim = 39 x 39 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> 2 NAs n = 50, LDL-dim = 24 x 24 Warning in allCholesky(mkA$A, silentTry = TRUE) : duplicated( ) differs from duplicated( ) -> no NAs There were 48 warnings (use warnings() to see them) > > > ## This is a relatively small "critical example" : > A. <- + new("dsCMatrix", Dim = c(25L, 25L), uplo = "U" + , i = as.integer( + c(0, 1, 2, 3, 4, 2, 5, 6, 0, 8, 8, 9, 3, 4, 10, 11, 6, 12, 13, 4, + 10, 14, 15, 1, 2, 5, 16, 17, 0, 7, 8, 18, 9, 19, 10, 11, 16, 20, + 0, 6, 7, 16, 17, 18, 20, 21, 6, 9, 12, 14, 19, 21, 22, 9, 11, 19, + 20, 22, 23, 1, 16, 24)) + ## + , p = c(0:6, 8:10, 12L, 15:16, 18:19, 22:23, 27:28, 32L, 34L, 38L, 46L, 53L, 59L, 62L) + ## + , x = c(1, 1, 1, 1, 2, 100, 2, 40, 1, 2, 100, 6700, 100, 100, 13200, + 1, 50, 4100, 1, 5, 400, 20, 1, 40, 100, 5600, 9100, 5000, 5, + 100, 100, 5900, 100, 6200, 30, 20, 9, 2800, 1, 100, 8, 10, 8000, + 100, 600, 23900, 30, 100, 2800, 50, 5000, 3100, 15100, 100, 10, + 5600, 800, 4500, 5500, 7, 600, 18200)) > validObject(A.) [1] TRUE > ## A1: the same pattern as A. just simply filled with '1's : > A1 <- A.; A1@x[] <- 1; A1@factors <- list() > A1.8 <- A1; diag(A1.8) <- 8 > ## > nT. <- as(AT <- as(A., "TsparseMatrix"),"nMatrix") > stopifnot(all(nT.@i <= nT.@j), + identical(qr(A1.8), qr(as(A1.8, "generalMatrix")))) > > CA <- Cholesky(A. + Diagonal(x = rowSums(abs(A.)) + 1)) > validObject(CA) [1] TRUE > stopifnotValid(CAinv <- solve(CA), "dsCMatrix") > MA <- as(CA, "CsparseMatrix") # with a confusing warning -- FIXME! > stopifnotValid(MAinv <- solve(MA), "dtCMatrix") > ## comparing MAinv with some solve(CA, system="...") .. *not* trivial? - TODO > ## > CAinv2 <- solve(CA, Diagonal(nrow(A.))) > CAinv2 <- as(CAinv2, "symmetricMatrix") > stopifnot(identical(CAinv, CAinv2)) > > ## FINALLY fix "TODO": (not implemented *symbolic* factorization of nMatrix) > try( tc <- Cholesky(nT.) ) Error in .local(A, ...) : leading principal minor of order 8 is zero In addition: Warning message: In .local(A, ...) : CHOLMOD warning 'not positive definite' at file '../Cholesky/t_cholmod_rowfac.c', line 430 > > for(p in c(FALSE,TRUE)) + for(L in c(FALSE,TRUE)) + for(s in c(FALSE,TRUE, NA)) { + cat(sprintf("p,L,S = (%2d,%2d,%2d): ", p,L,s)) + r <- tryCatch(Cholesky(A., perm=p, LDL=L, super=s), + error = function(e)e) + cat(if(inherits(r, "error")) " *** E ***" else + sprintf("%3d", r@type),"\n", sep="") + } p,L,S = ( 0, 0, 0): *** E *** p,L,S = ( 0, 0, 1): *** E *** p,L,S = ( 0, 0,NA): *** E *** p,L,S = ( 0, 1, 0): 0 0 0 1 0 0 p,L,S = ( 0, 1, 1): *** E *** p,L,S = ( 0, 1,NA): 0 0 0 1 0 0 p,L,S = ( 1, 0, 0): *** E *** p,L,S = ( 1, 0, 1): *** E *** p,L,S = ( 1, 0,NA): *** E *** p,L,S = ( 1, 1, 0): 2 0 0 1 0 0 p,L,S = ( 1, 1, 1): *** E *** p,L,S = ( 1, 1,NA): 2 0 0 1 0 0 Warning messages: 1: In .local(A, ...) : CHOLMOD warning 'not positive definite' at file '../Cholesky/t_cholmod_rowfac.c', line 430 2: In .local(A, ...) : CHOLMOD warning 'matrix not positive definite' at file '../Supernodal/t_cholmod_super_numeric.c', line 911 3: In .local(A, ...) : CHOLMOD warning 'not positive definite' at file '../Cholesky/t_cholmod_rowfac.c', line 430 4: In .local(A, ...) : CHOLMOD warning 'matrix not positive definite' at file '../Supernodal/t_cholmod_super_numeric.c', line 911 5: In .local(A, ...) : CHOLMOD warning 'not positive definite' at file '../Cholesky/t_cholmod_rowfac.c', line 430 6: In .local(A, ...) : CHOLMOD warning 'matrix not positive definite' at file '../Supernodal/t_cholmod_super_numeric.c', line 911 7: In .local(A, ...) : CHOLMOD warning 'not positive definite' at file '../Cholesky/t_cholmod_rowfac.c', line 430 8: In .local(A, ...) : CHOLMOD warning 'matrix not positive definite' at file '../Supernodal/t_cholmod_super_numeric.c', line 911 > str(A., max.level=3) ## look at the 'factors' Formal class 'dsCMatrix' [package "Matrix"] with 7 slots ..@ i : int [1:62] 0 1 2 3 4 2 5 6 0 8 ... ..@ p : int [1:26] 0 1 2 3 4 5 6 8 9 10 ... ..@ Dim : int [1:2] 25 25 ..@ Dimnames:List of 2 .. ..$ : NULL .. ..$ : NULL ..@ x : num [1:62] 1 1 1 1 2 100 2 40 1 2 ... ..@ uplo : chr "U" ..@ factors :List of 2 .. ..$ spDCholesky:Formal class 'dCHMsimpl' [package "Matrix"] with 11 slots .. ..$ sPDCholesky:Formal class 'dCHMsimpl' [package "Matrix"] with 11 slots > > facs <- A.@factors > names(facs) <- sub("Cholesky$", "", names(facs)) > facs <- facs[order(names(facs))] > > sapply(facs, class) sPD spD "dCHMsimpl" "dCHMsimpl" > str(lapply(facs, slot, "type")) List of 2 $ sPD: int [1:6] 2 0 0 1 0 0 $ spD: int [1:6] 0 0 0 1 0 0 > ## super = TRUE currently always entails LDL=FALSE : > ## hence isLDL is TRUE for ("D" and not "S"): > sapply(facs, isLDL) sPD spD TRUE TRUE > > chkCholesky <- function(chmf, A) { + stopifnot(is(chmf, "CHMfactor"), + validObject(chmf), + is(A, "Matrix"), isSymmetric(A)) + if(!is(A, "dsCMatrix")) + A <- as(as(as(A, "CsparseMatrix"), "symmetricMatrix", "dMatrix")) + L <- drop0(zapsmall(L. <- as(chmf, "CsparseMatrix"))) + cat("no. nonzeros in L {before / after drop0(zapsmall(.))}: ", + c(nnzero(L.), nnzero(L)), "\n") ## 112, 95 + ecc <- expand(chmf) + A... <- with(ecc, crossprod(crossprod(L,P))) + stopifnot(all.equal(L., ecc$L, tolerance = 1e-14), + all.equal(A, A..., tolerance = 1e-14)) + invisible(ecc) + } > > c1.8 <- try(Cholesky(A1.8, super = TRUE))# works "always", interestingly ... > chkCholesky(c1.8, A1.8) no. nonzeros in L {before / after drop0(zapsmall(.))}: 71 71 > > > > ## --- now a "large" (712 x 712) real data example --------------------------- > > data(KNex, package = "Matrix") > mtm <- with(KNex, crossprod(mm)) > ld.3 <- determinant(Cholesky(mtm, perm = TRUE), sqrt = FALSE) > stopifnot(identical(names(mtm@factors), + "sPDCholesky")) > ld.4 <- determinant(Cholesky(mtm, perm = FALSE), sqrt = FALSE) > stopifnot(identical(names(mtm@factors), + c("sPDCholesky", "spDCholesky"))) > c2 <- Cholesky(mtm, super = TRUE) > validObject(c2) [1] TRUE > stopifnot(identical(names(mtm@factors), + c("sPDCholesky", "spDCholesky", "SPdCholesky"))) > > r <- allCholesky(mtm) Warning in allCholesky(mtm) : duplicated( ) differs from duplicated( ) > r[-1] $dup.r.all [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE $r.all p L s perm LDL super . . . FALSE FALSE FALSE | . . TRUE FALSE FALSE . | . FALSE TRUE FALSE | | . TRUE TRUE FALSE . . | FALSE FALSE TRUE | . | TRUE FALSE TRUE . | | FALSE FALSE TRUE | | | TRUE FALSE TRUE . . ? FALSE FALSE FALSE | . ? TRUE FALSE FALSE . | ? FALSE TRUE FALSE | | ? TRUE TRUE FALSE $r.uniq p L s perm LDL super . . . FALSE FALSE FALSE | . . TRUE FALSE FALSE . | . FALSE TRUE FALSE | | . TRUE TRUE FALSE . . | FALSE FALSE TRUE | . | TRUE FALSE TRUE > > ## is now taken from cache > c1 <- Cholesky(mtm) > > bv <- 1:nrow(mtm) # even integer > b <- matrix(bv) > ## solve(c2, b) by default solves Ax = b, where A = c2'c2 ! > x <- solve(c2,b) > stopifnot(identical3(drop(x), solve(c2, bv), drop(solve(c2, b, system = "A"))), + all.equal(x, solve(mtm, b))) > for(sys in c("A", "LDLt", "LD", "DLt", "L", "Lt", "D", "P", "Pt")) { + x <- solve(c2, b, system = sys) + cat(sys,":\n"); print(head(x)) + stopifnot(dim(x) == c(712, 1), + identical(drop(x), solve(c2, bv, system = sys))) + } A : 6 x 1 Matrix of class "dgeMatrix" [,1] [1,] -324576.9 [2,] -602422.0 [3,] -475225.1 [4,] -656840.4 [5,] -823533.6 [6,] -853756.8 LDLt : 6 x 1 Matrix of class "dgeMatrix" [,1] [1,] 37696.471 [2,] 4713.432 [3,] 6643.932 [4,] 1866.030 [5,] 4340.785 [6,] 2086.379 LD : 6 x 1 Matrix of class "dgeMatrix" [,1] [1,] 1 [2,] 2 [3,] 3 [4,] 4 [5,] 5 [6,] 6 DLt : 6 x 1 Matrix of class "dgeMatrix" [,1] [1,] 778.7719 [2,] -422.7658 [3,] -351.6316 [4,] -522.6810 [5,] -544.7115 [6,] 227.2868 L : 6 x 1 Matrix of class "dgeMatrix" [,1] [1,] 1 [2,] 2 [3,] 3 [4,] 4 [5,] 5 [6,] 6 Lt : 6 x 1 Matrix of class "dgeMatrix" [,1] [1,] 778.7719 [2,] -422.7658 [3,] -351.6316 [4,] -522.6810 [5,] -544.7115 [6,] 227.2868 D : 6 x 1 Matrix of class "dgeMatrix" [,1] [1,] 1 [2,] 2 [3,] 3 [4,] 4 [5,] 5 [6,] 6 P : 6 x 1 Matrix of class "dgeMatrix" [,1] [1,] 257 [2,] 244 [3,] 243 [4,] 242 [5,] 214 [6,] 694 Pt : 6 x 1 Matrix of class "dgeMatrix" [,1] [1,] 617 [2,] 469 [3,] 473 [4,] 619 [5,] 453 [6,] 458 > > ## log(|LL'|) - check if super = TRUE and simplicial give same determinant > (ld.1 <- determinant(mtm)) $modulus [1] -343.1384 attr(,"logarithm") [1] TRUE $sign [1] 1 attr(,"class") [1] "det" > if(FALSE) { + ## MJ: CHMfactor_ldetL2 is unused outside of these tests, so we no longer + ## have it in the namespace { old definition is in ../src/CHMfactor.c } + ld1 <- .Call("CHMfactor_ldetL2", c1) + ld2 <- .Call("CHMfactor_ldetL2", c2) + stopifnot(all.equal(ld1, ld2), + all.equal(ld1, as.vector(ld.1$modulus), tolerance = 1e-14), + all.equal(ld1, as.vector(ld.3$modulus), tolerance = 1e-14), + all.equal(ld1, as.vector(ld.4$modulus), tolerance = 1e-14)) + } else { + stopifnot(all.equal(as.vector(ld.1$modulus), as.vector(ld.3$modulus), + tolerance = 1e-14), + all.equal(as.vector(ld.1$modulus), as.vector(ld.4$modulus), + tolerance = 1e-14)) + } > > ## MJ: ldet[123].dsC() are unused outside of these tests, so we no longer > ## have them in the namespace { old definitions are in ../R/determinant.R } > if(FALSE) { + ## Some timing measurements + mtm <- with(KNex, crossprod(mm)) + I <- .symDiagonal(n=nrow(mtm)) + set.seed(101); r <- runif(100) + + system.time(D1 <- sapply(r, function(rho) Matrix:::ldet1.dsC(mtm + (1/rho) * I))) + ## 0.842 on fast cmath-5 + system.time(D2 <- sapply(r, function(rho) Matrix:::ldet2.dsC(mtm + (1/rho) * I))) + ## 0.819 + system.time(D3 <- sapply(r, function(rho) Matrix:::ldet3.dsC(mtm + (1/rho) * I))) + ## 0.810 + stopifnot(is.all.equal3(D1,D2,D3, tol = 1e-13)) + } > > ## Updating LL' should remain LL' and not become LDL' : > cholCheck <- function(Ut, tol = 1e-12, super = FALSE, LDL = !super) { + L <- Cholesky(UtU <- tcrossprod(Ut), super=super, LDL=LDL, Imult = 1) + L1 <- update(L, UtU, mult = 1) + L2 <- update(L, Ut, mult = 1) + stopifnot(is.all.equal3(L, L1, L2, tol = tol), + all.equal(update(L, UtU, mult = pi), + update(L, Ut, mult = pi), tolerance = tol) + ) + } > > ## Inspired by > ## data(Dyestuff, package = "lme4") > ## Zt <- as(Dyestuff$Batch, "sparseMatrix") > Zt <- new("dgCMatrix", Dim = c(6L, 30L), x = 2*1:30, + i = rep(0:5, each=5), + p = 0:30, Dimnames = list(LETTERS[1:6], NULL)) > cholCheck(0.78 * Zt, tol=1e-14) > > oo <- options(Matrix.quiet.qr.R = TRUE, warn = 2)# no warnings allowed > qrZ <- qr(t(Zt)) > Rz <- qr.R(qrZ) > stopifnot(exprs = { + inherits(qrZ, "sparseQR") + inherits(Rz, "sparseMatrix") + isTriangular(Rz) + isDiagonal(Rz) # even though formally a "dtCMatrix" + qr2rankMatrix(qrZ, do.warn=FALSE) == 6 + }) > options(oo) > > ## problematic rank deficient rankMatrix() case -- only seen in large cases ?? > ## MJ: NA in diag(@R) not seen with Apple Clang 14.0.3 > Z. <- readRDS(system.file("external", "Z_NA_rnk.rds", package="Matrix")) > (rnkZ. <- rankMatrix(Z., method = "qr")) # gave errors; now warns typically, but not on aarm64 (M1) [1] NA attr(,"method") [1] "qr.R" attr(,"useGrad") [1] FALSE attr(,"tol") [1] 3.126388e-13 Warning message: In qr2rankMatrix(q.r, tol = tol, isBqr = x.dense, do.warn = warn.qr) : qr2rankMatrix(.): QR with only 684 out of 822 finite diag(R) entries > qrZ. <- qr(Z.) > options(warn=1) > rnk2 <- qr2rankMatrix(qrZ.) # warning ".. only 684 out of 822 finite diag(R) entries" Warning in qr2rankMatrix(qrZ.) : qr2rankMatrix(.): QR with only 684 out of 822 finite diag(R) entries > oo <- options(warn=2)# no warnings allowed from here > di.NA <- anyNA(diag(qrZ.@R)) > stopifnot(is(qrZ, "sparseQR"), + identical(is.na(rnkZ.), di.NA), + identical(is.na(rnk2), di.NA)) > > ## The above bug fix was partly wrongly extended to dense matrices for "qr.R": > x <- cbind(1, rep(0:9, 18)) > qr.R(qr(x)) # one negative diagonal [,1] [,2] [1,] -13.41641 -60.37384 [2,] 0.00000 38.53570 > qr.R(qr(x, LAPACK=TRUE)) # two negative diagonals [,1] [,2] [1,] -71.62402 -11.309056 [2,] 0.00000 -7.218398 > chkRnk <- function(x, rnk) { + stopifnot(exprs = { + rankMatrix(x) == rnk + rankMatrix(x, method="maybeGrad") == rnk ## but "useGrad" is not ! + rankMatrix(x, method="qrLINPACK") == rnk + rankMatrix(x, method="qr.R" ) == rnk + })# the last gave '0' and a warning in Matrix 1.3-0 + } > chkRnk( x, 2) > chkRnk(diag(1), 1) # had "empty stopifnot" (-> Error in MM's experimental setup) + warning 'min()' > (m3 <- cbind(2, rbind(diag(pi, 2), 8))) [,1] [,2] [,3] [1,] 2 3.141593 0.000000 [2,] 2 0.000000 3.141593 [3,] 2 8.000000 8.000000 > chkRnk(m3, 3) > chkRnk(matrix(0, 4,3), 0) > chkRnk(matrix(1, 5,5), 1) # had failed for "maybeGrad" > chkRnk(matrix(1, 5,2), 1) > > > showSys.time( + for(i in 1:120) { + set.seed(i) + M <- rspMat(n=rpois(1,50), m=rpois(1,20), density = 1/(4*rpois(1, 4))) + cat(sprintf("%3d: dim(M) = %2dx%2d, rank=%2d, k=%9.4g; ", + i, nrow(M), ncol(M), rankMatrix(M), kappa(M))) + for(super in c(FALSE,TRUE)) { + cat("super=",super,"M: ") + ## 2018-01-04, Avi Adler: needed 1.2e-12 in Windows 64 (for i=55, l.1): + cholCheck( M , tol=2e-12, super=super); cat(" M': ") + cholCheck(t(M), tol=2e-12, super=super) + } + cat(" [Ok]\n") + }) 1: dim(M) = 45x25, rank=21, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 2: dim(M) = 43x15, rank=15, k= 5.083; super= FALSE M: M': super= TRUE M: M': [Ok] 3: dim(M) = 43x18, rank=17, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 4: dim(M) = 51x17, rank=17, k= 26.07; super= FALSE M: M': super= TRUE M: M': [Ok] 5: dim(M) = 44x17, rank=16, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 6: dim(M) = 51x17, rank=12, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 7: dim(M) = 66x14, rank=14, k= 5.556; super= FALSE M: M': super= TRUE M: M': [Ok] 8: dim(M) = 49x23, rank=23, k= 13.49; super= FALSE M: M': super= TRUE M: M': [Ok] 9: dim(M) = 44x16, rank=16, k= 5.585; super= FALSE M: M': super= TRUE M: M': [Ok] 10: dim(M) = 50x19, rank=19, k= 8.837; super= FALSE M: M': super= TRUE M: M': [Ok] 11: dim(M) = 45x10, rank=10, k= 7.917; super= FALSE M: M': super= TRUE M: M': [Ok] 12: dim(M) = 39x17, rank=17, k= 11.81; super= FALSE M: M': super= TRUE M: M': [Ok] 13: dim(M) = 53x18, rank=13, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 14: dim(M) = 45x20, rank=18, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 15: dim(M) = 51x28, rank=27, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 16: dim(M) = 53x19, rank=18, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 17: dim(M) = 42x23, rank=21, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 18: dim(M) = 56x28, rank=28, k= 14.55; super= FALSE M: M': super= TRUE M: M': [Ok] 19: dim(M) = 41x13, rank=12, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 20: dim(M) = 58x17, rank=12, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 21: dim(M) = 55x22, rank=18, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 22: dim(M) = 46x20, rank=17, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 23: dim(M) = 51x18, rank=16, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 24: dim(M) = 46x20, rank=17, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 25: dim(M) = 48x15, rank=11, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 26: dim(M) = 34x23, rank=21, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 27: dim(M) = 63x25, rank=25, k= 18.79; super= FALSE M: M': super= TRUE M: M': [Ok] 28: dim(M) = 36x25, rank=21, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 29: dim(M) = 40x17, rank=11, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 30: dim(M) = 40x19, rank=19, k= 8.338; super= FALSE M: M': super= TRUE M: M': [Ok] 31: dim(M) = 50x19, rank=14, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 32: dim(M) = 50x23, rank=23, k= 11.41; super= FALSE M: M': super= TRUE M: M': [Ok] 33: dim(M) = 49x19, rank=13, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 34: dim(M) = 49x25, rank=25, k= 14.28; super= FALSE M: M': super= TRUE M: M': [Ok] 35: dim(M) = 57x20, rank=20, k= 13.3; super= FALSE M: M': super= TRUE M: M': [Ok] 36: dim(M) = 52x23, rank=21, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 37: dim(M) = 50x21, rank=19, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 38: dim(M) = 48x15, rank=13, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 39: dim(M) = 48x14, rank=13, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 40: dim(M) = 53x22, rank=22, k= 6.927; super= FALSE M: M': super= TRUE M: M': [Ok] 41: dim(M) = 44x15, rank=12, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 42: dim(M) = 59x17, rank=17, k= 4.9; super= FALSE M: M': super= TRUE M: M': [Ok] 43: dim(M) = 49x12, rank=11, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 44: dim(M) = 54x20, rank=20, k= 10.87; super= FALSE M: M': super= TRUE M: M': [Ok] 45: dim(M) = 52x16, rank=15, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 46: dim(M) = 43x18, rank=17, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 47: dim(M) = 64x23, rank=23, k= 20.77; super= FALSE M: M': super= TRUE M: M': [Ok] 48: dim(M) = 51x28, rank=22, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 49: dim(M) = 47x21, rank=21, k= 10.29; super= FALSE M: M': super= TRUE M: M': [Ok] 50: dim(M) = 53x16, rank=16, k= 4.912; super= FALSE M: M': super= TRUE M: M': [Ok] 51: dim(M) = 55x17, rank=15, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 52: dim(M) = 43x10, rank= 8, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 53: dim(M) = 51x14, rank=14, k= 19.61; super= FALSE M: M': super= TRUE M: M': [Ok] 54: dim(M) = 63x22, rank=22, k= 8.823; super= FALSE M: M': super= TRUE M: M': [Ok] 55: dim(M) = 50x11, rank=11, k= 6.33; super= FALSE M: M': super= TRUE M: M': [Ok] 56: dim(M) = 48x17, rank=17, k= 11.92; super= FALSE M: M': super= TRUE M: M': [Ok] 57: dim(M) = 45x15, rank=11, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 58: dim(M) = 46x27, rank=26, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 59: dim(M) = 36x22, rank=18, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 60: dim(M) = 55x22, rank=22, k= 30.21; super= FALSE M: M': super= TRUE M: M': [Ok] 61: dim(M) = 47x24, rank=20, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 62: dim(M) = 55x21, rank=21, k= 7.926; super= FALSE M: M': super= TRUE M: M': [Ok] 63: dim(M) = 59x11, rank=11, k= 28.41; super= FALSE M: M': super= TRUE M: M': [Ok] 64: dim(M) = 63x20, rank=20, k= 10.79; super= FALSE M: M': super= TRUE M: M': [Ok] 65: dim(M) = 41x12, rank=12, k= 4.169; super= FALSE M: M': super= TRUE M: M': [Ok] 66: dim(M) = 66x20, rank=20, k= 13.37; super= FALSE M: M': super= TRUE M: M': [Ok] 67: dim(M) = 58x19, rank=19, k= 7.797; super= FALSE M: M': super= TRUE M: M': [Ok] 68: dim(M) = 60x18, rank=18, k= 5.237; super= FALSE M: M': super= TRUE M: M': [Ok] 69: dim(M) = 50x21, rank=21, k= 14.43; super= FALSE M: M': super= TRUE M: M': [Ok] 70: dim(M) = 39x14, rank=14, k= 6.119; super= FALSE M: M': super= TRUE M: M': [Ok] 71: dim(M) = 46x16, rank=14, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 72: dim(M) = 59x25, rank=25, k= 16.74; super= FALSE M: M': super= TRUE M: M': [Ok] 73: dim(M) = 48x21, rank=20, k=3.136e+18; super= FALSE M: M': super= TRUE M: M': [Ok] 74: dim(M) = 53x16, rank=16, k= 8.899; super= FALSE M: M': super= TRUE M: M': [Ok] 75: dim(M) = 44x18, rank=18, k= 8.835; super= FALSE M: M': super= TRUE M: M': [Ok] 76: dim(M) = 52x19, rank=18, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 77: dim(M) = 46x27, rank=25, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 78: dim(M) = 55x21, rank=17, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 79: dim(M) = 57x22, rank=21, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 80: dim(M) = 48x23, rank=22, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 81: dim(M) = 42x 9, rank= 8, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 82: dim(M) = 41x19, rank=17, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 83: dim(M) = 33x27, rank=23, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 84: dim(M) = 55x25, rank=25, k= 11.44; super= FALSE M: M': super= TRUE M: M': [Ok] 85: dim(M) = 49x17, rank=13, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 86: dim(M) = 55x25, rank=25, k= 237.1; super= FALSE M: M': super= TRUE M: M': [Ok] 87: dim(M) = 62x17, rank=17, k= 4.925; super= FALSE M: M': super= TRUE M: M': [Ok] 88: dim(M) = 48x22, rank=15, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 89: dim(M) = 39x24, rank=20, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 90: dim(M) = 50x19, rank=19, k= 7.178; super= FALSE M: M': super= TRUE M: M': [Ok] 91: dim(M) = 50x20, rank=14, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 92: dim(M) = 39x21, rank=17, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 93: dim(M) = 47x18, rank=18, k= 6.972; super= FALSE M: M': super= TRUE M: M': [Ok] 94: dim(M) = 58x21, rank=21, k= 10.51; super= FALSE M: M': super= TRUE M: M': [Ok] 95: dim(M) = 42x13, rank=13, k= 22.02; super= FALSE M: M': super= TRUE M: M': [Ok] 96: dim(M) = 50x26, rank=22, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 97: dim(M) = 37x15, rank=10, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 98: dim(M) = 49x18, rank=18, k= 16.69; super= FALSE M: M': super= TRUE M: M': [Ok] 99: dim(M) = 51x22, rank=21, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 100: dim(M) = 46x12, rank= 9, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 101: dim(M) = 47x21, rank=21, k= 12.6; super= FALSE M: M': super= TRUE M: M': [Ok] 102: dim(M) = 51x23, rank=23, k= 12.84; super= FALSE M: M': super= TRUE M: M': [Ok] 103: dim(M) = 44x20, rank=20, k= 7.502; super= FALSE M: M': super= TRUE M: M': [Ok] 104: dim(M) = 47x28, rank=28, k= 16.27; super= FALSE M: M': super= TRUE M: M': [Ok] 105: dim(M) = 40x18, rank=16, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 106: dim(M) = 43x16, rank=13, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 107: dim(M) = 50x20, rank=20, k= 12.23; super= FALSE M: M': super= TRUE M: M': [Ok] 108: dim(M) = 49x18, rank=17, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 109: dim(M) = 36x29, rank=27, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 110: dim(M) = 52x26, rank=25, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 111: dim(M) = 51x18, rank=18, k= 8.149; super= FALSE M: M': super= TRUE M: M': [Ok] 112: dim(M) = 47x28, rank=28, k= 14.75; super= FALSE M: M': super= TRUE M: M': [Ok] 113: dim(M) = 50x26, rank=26, k= 27.23; super= FALSE M: M': super= TRUE M: M': [Ok] 114: dim(M) = 51x25, rank=25, k= 14.32; super= FALSE M: M': super= TRUE M: M': [Ok] 115: dim(M) = 54x22, rank=21, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 116: dim(M) = 54x16, rank=15, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 117: dim(M) = 54x20, rank=18, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 118: dim(M) = 38x21, rank=17, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 119: dim(M) = 34x29, rank=25, k= Inf; super= FALSE M: M': super= TRUE M: M': [Ok] 120: dim(M) = 48x18, rank=18, k= 7.804; super= FALSE M: M': super= TRUE M: M': [Ok] Time user system elapsed Time 1.07 0.00 1.06 > > .updateCHMfactor function (object, parent, mult = 0) .Call(CHMfactor_update, object, parent, mult) > ## TODO: (--> ../TODO "Cholesky"): > ## ---- > ## allow Cholesky(A,..) when A is not symmetric *AND* > ## we really want to factorize AA' ( + beta * I) > > > ## Schur() ---------------------- > checkSchur <- function(A, SchurA = Schur(A), tol = 1e-14) { + stopifnot(is(SchurA, "Schur"), + isOrthogonal(Q <- SchurA@Q), + all.equal(as.mat(A), + as.mat(Q %*% SchurA@T %*% t(Q)), tolerance = tol)) + } > > SH <- Schur(H5 <- Hilbert(5)) > checkSchur(H5, SH) > checkSchur(Diagonal(x = 9:3)) > > p <- 4L > uTp <- new("dtpMatrix", x=c(2, 3, -1, 4:6, -2:1), Dim = c(p,p)) > (uT <- as(uTp, "unpackedMatrix")) 4 x 4 Matrix of class "dtrMatrix" [,1] [,2] [,3] [,4] [1,] 2 3 4 -2 [2,] . -1 5 -1 [3,] . . 6 0 [4,] . . . 1 > ## Schur ( ) <--> Schur( ) > Su <- Schur(uT) ; checkSchur(uT, Su) > gT <- as(uT,"generalMatrix") > Sg <- Schur(gT) ; checkSchur(gT, Sg) > Stg <- Schur(t(gT));checkSchur(t(gT), Stg) > Stu <- Schur(t(uT));checkSchur(t(uT), Stu) > > stopifnot(identical3(Sg@T, uT, Su@T), + identical(Sg@Q, as(diag(p), "generalMatrix")), + identical(Stg@T, as(t(gT[,p:1])[,p:1], "triangularMatrix")), + identical(Stg@Q, as(diag(p)[,p:1], "generalMatrix")), + identical(Stu@T, Stg@T)) > assert.EQ.mat(Stu@Q, as(Stg@Q,"matrix"), tol=0) > > ## the pedigreemm example where solve(.) failed: > p <- new("dtCMatrix", i = c(2L, 3L, 2L, 5L, 4L, 4:5), p = c(0L, 2L, 4:7, 7L), + Dim = c(6L, 6L), Dimnames = list(as.character(1:6), NULL), + x = rep.int(-0.5, 7), uplo = "L", diag = "U") > Sp <- Schur(p) > Sp. <- Schur(as(p,"generalMatrix")) > Sp.p <- Schur(crossprod(p)) > ## the last two failed > ip <- solve(p) > assert.EQ.mat(solve(ip), as(p,"matrix")) > > > ## chol2inv() for a traditional matrix > assert.EQ.mat( crossprod(chol2inv(chol(Diagonal(x = 5:1)))), + C <- crossprod(chol2inv(chol( diag(x = 5:1))))) > stopifnot(all.equal(C, diag((5:1)^-2))) > ## failed in some versions because of a "wrong" implicit generic > > U <- cbind(1:0, 2*(1:2)) > (sU <- as(U, "CsparseMatrix")) 2 x 2 sparse Matrix of class "dtCMatrix" [1,] 1 2 [2,] . 4 > validObject(sS <- crossprod(sU)) [1] TRUE > C. <- chol(sS) > stopifnot(all.equal(C., sU, tolerance=1e-15)) > ## chol() > tC7 <- .trDiagonal(7, 7:1) > stopifnotValid(tC7, "dtCMatrix") > ch7 <- chol(tC7) ## this (and the next 2) failed: 'no slot .. "factors" ..."dtCMatrix"' > chT7 <- chol(tT7 <- as(tC7, "TsparseMatrix")) > chR7 <- chol(tR7 <- as(tC7, "RsparseMatrix")) > stopifnot(expr = { + isDiagonal(ch7) + identical(chT7, ch7) # "ddiMatrix" all of them + identical(chR7, ch7) # "ddiMatrix" all of them + all.equal(sqrt(7:1), diag(ch7 )) + }) > > > > ## From [Bug 14834] New: chol2inv *** caught segfault *** > n <- 1e6 # was 595362 > A <- chol( D <- Diagonal(n) ) > stopifnot(identical(A,D)) # A remains (unit)diagonal > is(tA <- as(A,"triangularMatrix"))# currently a dtTMatrix [1] "dtCMatrix" "CsparseMatrix" "dsparseMatrix" "triangularMatrix" [5] "dMatrix" "sparseMatrix" "Matrix" "replValueSp" > stopifnotValid(tA, "dsparseMatrix") > CA <- as(tA, "CsparseMatrix") > > selectMethod(solve, c("dtCMatrix","missing")) Method Definition: function (a, b, ...) { .local <- function (a, b, sparse = TRUE, ...) { if (a@diag != "N") a <- ..diagU2N(a) .Call(dtCMatrix_solve, a, NULL, sparse) } .local(a, b = b, ...) } Signatures: a b target "dtCMatrix" "missing" defined "dtCMatrix" "missing" > ##--> .Call(dtCMatrix_sparse_solve, a, .trDiagonal(n)) in ../src/dtCMatrix.c > sA <- solve(CA)## -- R_CheckStack() segfault in Matrix <= 1.0-4 > nca <- diagU2N(CA) > stopifnot(identical(sA, nca)) > ## same check with non-unit-diagonal D : > A <- chol(D <- Diagonal(n, x = 0.5)) > ia <- chol2inv(A) > stopifnot(is(ia, "diagonalMatrix"), + all.equal(ia@x, rep(2,n), tolerance = 1e-15)) > > ##------- Factor caches must be cleaned - even after scalar-Ops such as "2 *" > set.seed(7) > d <- 5 > S <- 10*Diagonal(d) + rsparsematrix(d,d, 1/4) > class(M <- as(S, "denseMatrix")) # dgeMatrix [1] "dgeMatrix" attr(,"package") [1] "Matrix" > m <- as.matrix(M) > (dS <- determinant(S)) $modulus [1] 11.47196 attr(,"logarithm") [1] TRUE $sign [1] 1 attr(,"class") [1] "det" > stopifnot(exprs = { + all.equal(determinant(m), dS, tolerance=1e-15) + all.equal(dS, determinant(M), tolerance=1e-15) + ## These had failed, as the "LU" factor cache was kept unchanged in 2*M : + all.equal(determinant(2*S), determinant(2*M) -> d2M) + all.equal(determinant(S^2), determinant(M^2) -> dM2) + all.equal(determinant(m^2), dM2) + all.equal(d*log(2), c(d2M$modulus - dS$modulus)) + }) > > ## misc. bugs found in Matrix 1.4-1 > L. <- new("dtCMatrix", Dim = c(1L, 1L), uplo = "L", + p = c(0L, 1L), i = 0L, x = 1) > S. <- forceSymmetric(L.) > lu(S.) LU factorization of Formal class 'sparseLU' [package "Matrix"] with 6 slots ..@ L :Formal class 'dtCMatrix' [package "Matrix"] with 7 slots .. .. ..@ i : int 0 .. .. ..@ p : int [1:2] 0 1 .. .. ..@ Dim : int [1:2] 1 1 .. .. ..@ Dimnames:List of 2 .. .. .. ..$ : NULL .. .. .. ..$ : NULL .. .. ..@ x : num 1 .. .. ..@ uplo : chr "L" .. .. ..@ diag : chr "N" ..@ U :Formal class 'dtCMatrix' [package "Matrix"] with 7 slots .. .. ..@ i : int 0 .. .. ..@ p : int [1:2] 0 1 .. .. ..@ Dim : int [1:2] 1 1 .. .. ..@ Dimnames:List of 2 .. .. .. ..$ : NULL .. .. .. ..$ : NULL .. .. ..@ x : num 1 .. .. ..@ uplo : chr "U" .. .. ..@ diag : chr "N" ..@ p : int 0 ..@ q : int 0 ..@ Dim : int [1:2] 1 1 ..@ Dimnames:List of 2 .. ..$ : NULL .. ..$ : NULL > stopifnot(validObject(lu(L.)), # was invalid + identical(names(S.@factors), "sparseLU")) # was "lu" > > ## chol() should give matrix with 'Dimnames', > ## even if 'Dimnames' are not cached > D. <- as(diag(3), "CsparseMatrix") > D.@Dimnames <- dn <- list(zzz = letters[1:3], ZZZ = LETTERS[1:3]) > cd1 <- chol(D.) # "fresh" > stopifnot(identical(cd1@Dimnames, rep(dn[2L], 2L))) > cd2 <- chol(D.) # from cache > stopifnot(identical(cd1, cd2)) > > ## lu(), lu(<0-by-n>), BunchKaufman(<0-by-0>), chol(<0-by-0>) > stopifnot(identical(lu(new("dgeMatrix", Dim = c(2L, 0L))), + new("denseLU", Dim = c(2L, 0L))), + identical(lu(new("dgeMatrix", Dim = c(0L, 2L))), + new("denseLU", Dim = c(0L, 2L))), + identical(BunchKaufman(new("dsyMatrix", uplo = "U")), + new("BunchKaufman", uplo = "U")), + identical(BunchKaufman(new("dspMatrix", uplo = "L")), + new("pBunchKaufman", uplo = "L")), + identical(Cholesky(new("dpoMatrix", uplo = "U")), + new("Cholesky", uplo = "U")), + identical(Cholesky(new("dppMatrix", uplo = "L")), + new("pCholesky", uplo = "L"))) > > ## determinant() going via Bunch-Kaufman > set.seed(15742) > n <- 10L > syU <- syL <- new("dsyMatrix", Dim = c(n, n), x = rnorm(n * n)) > spU <- spL <- new("dspMatrix", Dim = c(n, n), x = rnorm((n * (n + 1L)) %/% 2L)) > syL@uplo <- spL@uplo <- "L" > for(m in list(syU, syL, spU, spL)) + for(givelog in c(FALSE, TRUE)) + stopifnot(all.equal(determinant( m, givelog), + determinant(as(m, "matrix"), givelog))) > > ## was an error at least in Matrix 1.5-4 ... > BunchKaufman(as.matrix(1)) Bunch-Kaufman factorization of Formal class 'BunchKaufman' [package "Matrix"] with 5 slots ..@ uplo : chr "U" ..@ x : num 1 ..@ perm : int 1 ..@ Dim : int [1:2] 1 1 ..@ Dimnames:List of 2 .. ..$ : NULL .. ..$ : NULL > > > ## 'expand2': product of listed factors should reproduce factorized matrix > ## FIXME: many of our %*% methods still mangle dimnames or names(dimnames) ... > ## hence for now we coerce the factors to matrix before multiplying > chkMF <- function(X, Y, FUN, ...) { + ## t(x)@factors may preserve factorizations with x@uplo + X@factors <- list() + + mf <- FUN(X, ...) + e2.mf <- expand2(mf) + e1.mf <- sapply(names(e2.mf), expand1, x = mf, simplify = FALSE) + + m.e2.mf <- lapply(e2.mf, as, "matrix") + m.e1.mf <- lapply(e1.mf, as, "matrix") + + identical(m.e1.mf, lapply(m.e2.mf, unname)) && + isTRUE(all.equal(Reduce(`%*%`, m.e2.mf), Y)) + } > set.seed(24831) > n <- 16L > mS <- tcrossprod(matrix(rnorm(n * n), n, n, + dimnames = list(A = paste0("s", seq_len(n)), NULL))) > sS <- as(pS <- as(S <- as(mS, "dpoMatrix"), "packedMatrix"), "CsparseMatrix") > stopifnot(exprs = { + chkMF( S , mS, Schur) + chkMF( pS , mS, Schur) + chkMF( S , mS, lu) + chkMF( pS , mS, lu) + chkMF( sS , mS, lu) + chkMF( sS , mS, qr) + chkMF( S , mS, BunchKaufman) + chkMF( pS , mS, BunchKaufman) + chkMF(t( S), mS, BunchKaufman) + chkMF(t(pS), mS, BunchKaufman) + chkMF( S , mS, Cholesky) + chkMF( pS , mS, Cholesky) + chkMF(t( S), mS, Cholesky) + chkMF(t(pS), mS, Cholesky) + chkMF( sS , mS, Cholesky, super = FALSE, LDL = TRUE) + chkMF( sS , mS, Cholesky, super = FALSE, LDL = FALSE) + chkMF( sS , mS, Cholesky, super = TRUE, LDL = FALSE) + }) > > > cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons'' Time elapsed: 5.84 0.18 6.01 NA NA > > proc.time() user system elapsed 5.84 0.18 6.01