* using log directory ‘/home/hornik/tmp/CRAN_special_donttest/MSclassifR.Rcheck’ * using R Under development (unstable) (2025-12-07 r89119) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc-15 (Debian 15.2.0-9) 15.2.0 GNU Fortran (Debian 15.2.0-9) 15.2.0 * running under: Debian GNU/Linux forky/sid * using session charset: UTF-8 * using option ‘--run-donttest’ * checking for file ‘MSclassifR/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘MSclassifR’ version ‘0.5.0’ * package encoding: UTF-8 * checking CRAN incoming feasibility ... [5s/6s] NOTE Maintainer: ‘Alexandre Godmer ’ Possibly misspelled words in DESCRIPTION: Desorption (11:199) MALDI (11:257, 11:623) Spectrometry (11:243) TOF (11:263, 11:629) spectrometry (11:787) * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for executable files ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘MSclassifR’ can be installed ... [24s/24s] OK * used C++ compiler: ‘g++-15 (Debian 15.2.0-9) 15.2.0’ * checking package directory ... OK * checking for future file timestamps ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... [3s/3s] OK * checking whether the package can be loaded with stated dependencies ... [3s/3s] OK * checking whether the package can be unloaded cleanly ... [3s/3s] OK * checking whether the namespace can be loaded with stated dependencies ... [3s/3s] OK * checking whether the namespace can be unloaded cleanly ... [3s/3s] OK * checking loading without being on the library search path ... [3s/3s] OK * checking use of S3 registration ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... [18s/18s] OK * checking Rd files ... [0s/0s] OK * checking Rd metadata ... OK * checking Rd line widths ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... [0s/0s] OK * checking LazyData ... OK * checking data for ASCII and uncompressed saves ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking pragmas in C/C++ headers and code ... OK * checking compilation flags used ... OK * checking compiled code ... OK * checking examples ... [8s/8s] ERROR Running examples in ‘MSclassifR-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: PredictLogReg > ### Title: Prediction of the category to which a mass spectrum belongs > ### Aliases: PredictLogReg > > ### ** Examples > > ## No test: > library(MSclassifR) > library(MALDIquant) > > ## 1) Preprocess and detect peaks > data("CitrobacterRKIspectra", "CitrobacterRKImetadata", package = "MSclassifR") > spectra <- SignalProcessing(CitrobacterRKIspectra) [SignalProcessingUltra] N=14; workers=1; align=lowess; OS=unix 1) Transform: sqrt 2) Smooth: Wavelet 3) Baseline: SNIP 4) Calibrate: TIC 5) Building reference peaks (minFrequency=0.5, method=strict) 6) Align: lowess > peaks <- MSclassifR::PeakDetection(x = spectra, averageMassSpec = FALSE) Detecting peaks (method=MAD, SNR=3) [serial] Aligning peaks in discrete bins > > ## 2) Build X and Y (sample-by-peak intensities + labels) > ## Option A: if you prefer the helper and a sparse return: > Y <- factor(CitrobacterRKImetadata$Species) > xy <- build_XY_from_peaks(peaks, labels = Y, normalize = "max", sparse = FALSE) > X <- xy$X > Y <- xy$Y > > ## Option B: via MALDIquant::intensityMatrix (as in the original examples) > ##IntMat <- MALDIquant::intensityMatrix(peaks) > ##rownames(IntMat) <- paste(CitrobacterRKImetadata$Strain_name_spot) > ##IntMat[is.na(IntMat)] <- 0 > ##IntMat <- t(apply(IntMat, 1, function(x) x / max(x))) # per-spectrum max norm > ##X <- t(IntMat) # features in columns > ##Y <- factor(CitrobacterRKImetadata$Species) > > ## 3) Select discriminant m/z with "cvp" method > a <- MSclassifR::SelectionVar( + X, Y, + MethodSelection = "cvp", + MethodValidation = "cv", + PreProcessing = c("center","scale","nzv","corr"), + NumberCV = 2, + Metric = "Kappa" + ) No sampling method selected Selection variables with cvp method > sel_moz <- a$sel_moz > > ## 4) Train several models on the shortlisted m/z > model_lm <- MSclassifR::LogReg(X = X, moz = sel_moz, Y = Y, number = 2, + repeats = 2, Metric = "Kappa", kind = "linear") LogReg function according to the following parameters: No sampling method selected Error in .check_ncores(length(names)) : 31 simultaneous processes spawned Calls: -> -> makePSOCKcluster -> .check_ncores Execution halted * checking PDF version of manual ... [3s/3s] OK * checking HTML version of manual ... [2s/2s] OK * checking for non-standard things in the check directory ... OK * checking for detritus in the temp directory ... OK * DONE Status: 1 ERROR, 1 NOTE