testthat::context("Testing print.sum.functions") datalist <- list(osteopain=osteopain, copd=copd, goutSUA_CFBcomb=goutSUA_CFBcomb, hyalarthritis=hyalarthritis, diabetes=diabetes, alog_pcfb=alog_pcfb) testthat::test_that("print.sum tests pass correctly", { testthat::expect_equal(1,1) # Avoids empty tests skip_on_appveyor() skip_on_ci() skip_on_cran() n.iter <- 200 n.burnin <- 100 n.thin <- 1 seed <- 890421 for (i in seq_along(datalist)) { print(names(datalist)[i]) network <- mb.network(datalist[[i]]) # REMOVE SUPPRESSWARNINGS FROM VERSION 0.2.3 ONWARNS suppressWarnings( emax1 <- mb.run(network, fun=temax(pool.emax="abs", method.emax="random", pool.et50="rel", method.et50="common"), n.chain=3, n.iter=200, n.burnin=100, jags.seed=seed, rho="dunif(0,1)", covar="AR1", pD=FALSE, positive.scale = TRUE, intercept = TRUE, UME=TRUE) ) network.gout <- mb.network(goutSUA_CFBcomb) maxtime <- max(network.gout$data.ab$time, na.rm=TRUE) knots <- stats::quantile(0:maxtime, probs = c(0.6)) names(knots) <- NULL piece1 <- mb.run(network.gout, fun=tspline(type="ls", knots=knots, pool.1="abs", method.1="random", pool.2="rel", method.2="common"), intercept=FALSE, n.chain=3, n.iter=200, n.burnin=100, jags.seed=seed, rho=0.2, covar="CS", pD=TRUE, class.effect = list(beta.2="random")) ############################################## ########### TESTS ###################### ############################################## testthat::test_that("overall.str functions correctly", { testthat::expect_output(overall.str(emax1), "Data modelled with intercept") testthat::expect_output(overall.str(emax1), "Time-course function: emax") testthat::expect_output(overall.str(emax1), "Responses restricted to taking positive values") testthat::expect_output(overall.str(piece1), "Data modelled without intercept") testthat::expect_output(overall.str(piece1), "Time-course function: Piecewise linear spline \\(knots =") }) testthat::test_that("treat.str functions correctly", { # Emax testthat::expect_output(treat.str(emax1), "Unrelated Mean Effect results modelled for this parameter") testthat::expect_output(treat.str(emax1), "Too many parameters") testthat::expect_output(treat.str(emax1), "Pooling: absolute effects") testthat::expect_output(treat.str(emax1), "Method: random treatment effects") testthat::expect_output(treat.str(emax1), "Between-study SD") testthat::expect_output(treat.str(emax1), "Pooling: relative effects") testthat::expect_output(treat.str(emax1), "Method: common treatment effects") testthat::expect_output(treat.str(piece1), "Class effects modelled for this") testthat::expect_output(treat.str(piece1), "Pooling: absolute effects") testthat::expect_output(treat.str(piece1), "Method: random treatment effects") testthat::expect_output(treat.str(piece1), "Between-study SD") testthat::expect_output(treat.str(piece1), "Pooling: relative effects") testthat::expect_output(treat.str(piece1), "Method: common treatment effects") testthat::expect_output(treat.str(piece1), "beta\\.1") testthat::expect_output(treat.str(piece1), "sd\\.beta\\.1") }) testthat::test_that("cor.str functions correctly", { testthat::expect_output(cor.str(emax1), "Correlation between time points") testthat::expect_output(cor.str(emax1), "Rho estimated from the data") testthat::expect_output(cor.str(emax1), "Median") testthat::expect_output(cor.str(emax1), "AR1") testthat::expect_output(cor.str(piece1), "Correlation between time points") testthat::expect_output(cor.str(piece1), "CS") testthat::expect_output(cor.str(piece1), "Rho assigned a numeric value\\: 0\\.2") }) testthat::test_that("class.str functions correctly", { testthat::expect_output(class.str(emax1), NA) testthat::expect_output(class.str(piece1), "Class effects for beta\\.2") testthat::expect_output(class.str(piece1), "Random \\(exchangeable") testthat::expect_output(class.str(piece1), "Median") testthat::expect_output(class.str(piece1), "Within-class SD") testthat::expect_output(class.str(piece1), "sd\\.D\\.2") }) testthat::test_that("modfit.str functions correctly", { test <- modfit.str(emax1) testthat::expect_equal(grepl("Model Fit Statistics", test), TRUE) testthat::expect_equal(grepl("Effective number of parameters:\n", test), TRUE) testthat::expect_equal(grepl("pD \\(pV\\) calculated using", test), TRUE) testthat::expect_equal(grepl("Deviance =", test), TRUE) testthat::expect_equal(grepl("Residual deviance = NOT MONITORED", test), TRUE) testthat::expect_equal(grepl("DIC", test), TRUE) test <- modfit.str(piece1) testthat::expect_equal(grepl("Model Fit Statistics", test), TRUE) testthat::expect_equal(grepl("Effective number of parameters:\n", test), TRUE) testthat::expect_equal(grepl("pV", test), FALSE) testthat::expect_equal(grepl("Kullback-Leibler", test), TRUE) testthat::expect_equal(grepl("Deviance =", test), TRUE) testthat::expect_equal(grepl("Residual deviance = NOT MONITORED", test), TRUE) testthat::expect_equal(grepl("DIC", test), TRUE) }) } })