test_that("Test internals", { testthat::skip_on_cran() local_edition(3) # .expand_parameters() ------------------------------------------------------ ##create empty function ... reminder ##this is an internal function, the first object is always discarded, it ##might be a list of RLum.Analysis objects is might be super large f <- function(object, a, b = 1, c = list(), d = NULL) { Luminescence:::.expand_parameters(len = 3) } ##test some functions ##missing arguments must be identified expect_error(f(), "Argument missing; with no default!") ##check whether the objects are properly recycled expect_type(f(object, a = 1), "list") expect_length(f(object, a = 1, c = list(a = 1, b = 2, c = 3))$c, 3) # .calc_HPDI() ------------------------------------------------------------ set.seed(1234) test <- expect_type(Luminescence:::.calc_HPDI(rnorm(100), plot = TRUE), "double") expect_equal(round(sum(test),2), 0.20, tolerance = 1) ##create a case where the value cannot be calculated expect_type(.calc_HPDI(rlnorm(n = 100, meanlog = 10, sdlog = 100)), type = "logical") # .warningCatcher() --------------------------------------------------------------------------- expect_warning(Luminescence:::.warningCatcher(for(i in 1:5) warning("test")), regexp = "\\(1\\) test\\: This warning occurred 5 times\\!") # .smoothing ---------------------------------------------------------------------------------- expect_silent(Luminescence:::.smoothing(runif(100), k = 5, method = "median")) expect_error(Luminescence:::.smoothing(runif(100), method = "test")) # fancy_scientific ()-------------------------------------------------------------------------- plot(seq(1e10, 1e20, length.out = 10),1:10, xaxt = "n") expect_silent(axis(1, at = axTicks(1),labels = Luminescence:::fancy_scientific(axTicks(1)))) # .add_fancy_log_axis() ----------------------------------------------------- y <- c(0.1, 0.001, 0.0001) plot(1:length(y), y, yaxt = "n", log = "y") expect_silent(Luminescence:::.add_fancy_log_axis(side = 2, las = 1)) # .create_StatisticalSummaryText() ------------------------------------------------------------ expect_silent(Luminescence:::.create_StatisticalSummaryText()) expect_type( Luminescence:::.create_StatisticalSummaryText( calc_Statistics(data.frame(1:10,1:10)), keywords = "mean"), "character") # .unlist_RLum() ------------------------------------------------------------------------------ expect_length(Luminescence:::.unlist_RLum(list(a = list(b = list(c = list(d = 1, e = 2))))), 2) # .rm_nonRLum() ----------------------------------------------------------- expect_type( Luminescence:::.rm_nonRLum(c(list(set_RLum("RLum.Analysis"), set_RLum("RLum.Analysis")), 2)), "list") expect_type( Luminescence:::.rm_nonRLum( c(list(set_RLum("RLum.Analysis"), set_RLum("RLum.Analysis")), 2), class = "RLum.Analysis"), "list") # .matrix_binning() --------------------------------------------------------------------------- m <- matrix(data = c(rep(1:20, each = 20)), ncol = 20, nrow = 20) rownames(m) <- 1:nrow(m) colnames(m) <- 1:ncol(m) ##crash the function expect_error(Luminescence:::.matrix_binning("none matrix"), regexp = "Input is not of class 'matrix'!") ##test operation modes and arguments expect_type(Luminescence:::.matrix_binning(m, bin_size = 4, bin_col = FALSE), "integer") expect_type(Luminescence:::.matrix_binning(m, bin_size = 4, bin_col = TRUE), "integer") ##test row / column renaming options expect_type(Luminescence:::.matrix_binning(m, bin_size = 2, bin_col = FALSE, names = "groups"), "integer") expect_type(Luminescence:::.matrix_binning(m, bin_size = 2, bin_col = FALSE, names = "mean"), "integer") expect_type(Luminescence:::.matrix_binning(m, bin_size = 2, bin_col = FALSE, names = "sum"), "integer") expect_type(Luminescence:::.matrix_binning(m, bin_size = 2, bin_col = FALSE, names = c("test1", "test2")), "integer") ##clean-up rm(m) ## C++ code ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## # src_create_RLumDataCurve_matrix ------------------------------------------------------------- ##RLum.Data.Curve() ... test src_create_RLumDataCurve_matrix() expect_output( Luminescence:::src_create_RLumDataCurve_matrix( DATA = 1:100, VERSION = 4, NPOINTS = 100, LTYPE = "TL", LOW = 0, HIGH = 500, AN_TEMP = 0, TOLDELAY = 0, TOLON = 0, TOLOFF = 0 ) ) })