R Under development (unstable) (2024-10-07 r87211 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > suppressMessages(library(LatticeKrig)) > > ####################################################### > # Define two useful predict functions. > ####################################################### > predict.surfaceGrid<- function(object,x){ + interp.surface( object, x) + } > # this is a simple function that just returns the constant value > # object$value > predict.CONSTANT<- function(object,x){ + rep( object$value, nrow(x)) + } > ### first compare the stationsry case to its equivalent parameterization as > ### a nonstationary model but where parameters are constant. > > ############# 1-d case first > > a.wghtObject<- list(value = 4.5) > class( a.wghtObject )<-"CONSTANT" > > alphaTemp<-c(.75, .2, .05) > alphaObject<- NULL > for( k in 1:3){ + temp<- list( value = alphaTemp[k]) + class( temp )<-"CONSTANT" + alphaObject<- c( alphaObject, list( temp)) + } > > LKinfo0<- LKrigSetup( rbind(-1,1), NC=4, + LKGeometry="LKInterval", + nlevel=3, a.wght=4.5, alpha=alphaTemp ) > #NOTE can reuse predict objects because they are constants not related to > # locations > LKinfoTEST1<- LKrigSetup( rbind(-1,1), NC=4, + LKGeometry="LKInterval", + nlevel=3, + a.wghtObject = a.wghtObject, + alphaObject = alphaObject ) > xGrid<- cbind(seq( -1,1,length.out= 20)) > for( k in 1:3){ + s0<- spind2full(LKrigSAR( LKinfo0, k)) + s1<- spind2full(LKrigSAR( LKinfoTEST1, k)) + test.for.zero( s0,s1, tag="1-d SAR Levels") + } Testing: 1-d SAR Levels PASSED test at tolerance 1e-08 Testing: 1-d SAR Levels PASSED test at tolerance 1e-08 Testing: 1-d SAR Levels PASSED test at tolerance 1e-08 > p0<- LKrig.precision( LKinfo0) > p1<- LKrig.precision( LKinfoTEST1) > test.for.zero( p0@entries, p1@entries, tag="1-d SAR Precision") Testing: 1-d SAR Precision PASSED test at tolerance 1e-08 > > ############# 2-d case > > > # spatial domain > sDomain<- rbind( c(-1,-1), + c(1,1)) > > alphaTemp<-c(.75, .2, .05) > alphaTemp<-rep( 1, 3) > # To get started compare stationary model specified two ways > LKinfo0<- LKrigSetup( sDomain, NC=3, + NC.buffer=2, + nlevel=3, a.wght=4.5, alpha=alphaTemp ) > a.wghtObject<- list(value = 4.5) > class( a.wghtObject )<-"CONSTANT" > > > alphaObject<- NULL > for( k in 1:3){ + temp<- list( value = alphaTemp[k]) + class( temp )<-"CONSTANT" + alphaObject<- c( alphaObject, list( temp)) + } > LKinfoTEST1<- LKrigSetup( sDomain, NC=3, nlevel=3, + NC.buffer=2, + a.wghtObject = a.wghtObject, + alpha = alphaTemp ) > LKinfoTEST2<- LKrigSetup( sDomain, NC=3, nlevel=3, + NC.buffer=2, + a.wghtObject = a.wghtObject, + alphaObject = alphaObject ) > > p0<- LKrig.precision( LKinfo0) > p1<- LKrig.precision( LKinfoTEST1) > p2<- LKrig.precision( LKinfoTEST2) > test.for.zero( p0@entries, p1@entries, tag="2-d precision alpha constant") Testing: 2-d precision alpha constant PASSED test at tolerance 1e-08 > test.for.zero( p1@entries, p2@entries, tag="2-d precision alphaObject") Testing: 2-d precision alphaObject PASSED test at tolerance 1e-08 > > b0<- LKrig.basis( rbind( c(.2,.8)), LKinfo0) > b1<- LKrig.basis( rbind( c(.2,.8)), LKinfoTEST1) > b2<- LKrig.basis( rbind( c(.2,.8)), LKinfoTEST2) > test.for.zero( b0,b1, tag="2-d basis alpha constant") Testing: 2-d basis alpha constant PASSED test at tolerance 1e-08 > test.for.zero( b1,b2,tag="2-d basis alphaObject") Testing: 2-d basis alphaObject PASSED test at tolerance 1e-08 > > > > proc.time() user system elapsed 3.87 0.04 3.92