# LUCID - five omics, binary outcome test_that("check estimations of LUCID with binary outcome (K = 2,2,2)", { i <- 1008 set.seed(i) G <- matrix(rnorm(500), nrow = 100) Z1 <- matrix(rnorm(1000),nrow = 100) Z2 <- matrix(rnorm(1000), nrow = 100) Z3 <- matrix(rnorm(1000), nrow = 100) Z4 <- matrix(rnorm(1000), nrow = 100) Z5 <- matrix(rnorm(1000), nrow = 100) Z <- list(Z1 = Z1, Z2 = Z2, Z3 = Z3, Z4 = Z4, Z5 = Z5) Z_e = matrix(rnorm(1000), nrow = 100) Y <- rbinom(n=100, size =1, prob =0.25) CoY <- matrix(rnorm(200), nrow = 100) CoG <- matrix(rnorm(200), nrow = 100) ## early invisible(capture.output(fit1 <- lucid(G = G, Z = Z_e, Y = Y, K = 2:4, CoG = CoG, CoY = CoY, lucid_model = "early", family = "binary",init_omic.data.model = "VVV", seed = i, useY = TRUE))) sum_fit1 = summary(fit1) invisible(capture.output(fit2 <- lucid(G = G, Z = Z, Y = Y, K = list(3, 2:4, 3, 2:3, 2), CoG = CoG, CoY = CoY, lucid_model = "parallel", family = "binary", init_omic.data.model = "VVV", seed = i, useY = TRUE))) sum_fit2 = summary(fit2) Z <- list(Z1 = Z1, list(Z2 = Z2, Z3 = Z3), Z4 = Z4, Z5 = Z5) invisible(capture.output(fit3 <- lucid(G = G, Z = Z, Y = Y, K = list(2:3,list(2,2:4),2:3,2), CoG = CoG, CoY = CoY, lucid_model = "serial", family = "binary", init_omic.data.model = "VVV", seed = i, useY = TRUE))) sum_fit3 = summary(fit3) })