# LUCID - LUCID in Serial, binary outcome test_that("check estimations of LUCID in Serial with binary outcome (K = 2,2,2,2,2)", { i <- 1008 set.seed(i) G <- matrix(rnorm(500), nrow = 100) Z1 <- matrix(rnorm(1000),nrow = 100) Z2 <- matrix(rnorm(1000), nrow = 100) Z3 <- matrix(rnorm(1000), nrow = 100) Z4 <- matrix(rnorm(1000), nrow = 100) Z5 <- matrix(rnorm(1000), nrow = 100) Z <- list(Z1 = Z1, Z2 = Z2, Z3 = Z3, Z4 = Z4, Z5 = Z5) Y <- rbinom(n=100, size =1, prob =0.25) CoY <- matrix(rnorm(200), nrow = 100) CoG <- matrix(rnorm(200), nrow = 100) # i <- sample(1:2000, 1) # cat(paste("test1 - seed =", i, "\n")) invisible(capture.output(fit1 <- estimate_lucid(G = G, Z = Z, Y = Y, K = c(2, 2, 2, 2, 2), lucid_model = "serial", family = "binary", init_omic.data.model = "VVV", CoG = CoG, CoY = CoY, seed = i, useY = TRUE))) betas <- mean(unlist(fit1$res_Beta)) mus <- mean(unlist(fit1$res_Mu)) sigma <- mean(unlist(fit1$res_Sigma)) Gamma <- mean(unlist(fit1$res_Gamma)) # check parameters expect_equal(betas, -0.0672, tolerance = 0.01) expect_equal(mus, 0.0189, tolerance = 0.01) expect_equal(sigma, 0.086, tolerance = 0.01) expect_equal(Gamma, -0.164, tolerance = 0.01) expect_equal(class(fit1), "lucid_serial") Z <- list(Z1 = Z1, list(Z2 = Z2, Z3 = Z3), Z4 = Z4, Z5 = Z5) invisible(capture.output(fit2 <- estimate_lucid(G = G, Z = Z, Y = Y, K = list(2,list(2,2),2,2), CoG = CoG, CoY = CoY, lucid_model = "serial", family = "binary", init_omic.data.model = "VVV", seed = i, useY = TRUE))) betas <- mean(unlist(fit2$res_Beta)) mus <- mean(unlist(fit2$res_Mu)) sigma <- mean(unlist(fit2$res_Sigma)) Gamma <- mean(unlist(fit2$res_Gamma)) # check parameters expect_equal(betas, -0.0672, tolerance = 0.01) expect_equal(mus, 0.01795, tolerance = 0.01) expect_equal(sigma, 0.0863, tolerance = 0.01) expect_equal(Gamma, -0.164, tolerance = 0.01) expect_equal(class(fit2), "lucid_serial") Z <- list(Z1 = Z1, list(Z2 = Z2, Z3 = Z3), list(Z4 = Z4, Z5 = Z5)) invisible(capture.output(fit3 <- estimate_lucid(G = G, Z = Z, Y = Y, K = list(3,list(2,2),list(2,2)), lucid_model = "serial", family = "binary", seed = i, init_omic.data.model = "VVV", CoG = CoG, CoY = CoY, useY = TRUE))) betas <- mean(unlist(fit3$res_Beta)) mus <- mean(unlist(fit3$res_Mu)) sigma <- mean(unlist(fit3$res_Sigma)) Gamma <- mean(unlist(fit3$res_Gamma$Gamma$mu)) # check parameters expect_equal(betas, -7.73, tolerance = 0.01) expect_equal(mus, 0.01496, tolerance = 0.01) expect_equal(sigma, 0.0877, tolerance = 0.01) expect_equal(Gamma, 0.25, tolerance = 0.01) expect_equal(class(fit3), "lucid_serial") })