# LUCID - LUCID in Serial, binary outcome test_that("check estimations of LUCID in Serial with binary outcome (K = 2,2,2,2,2)", { i <- 1008 set.seed(i) G <- matrix(rnorm(500), nrow = 100) Z1 <- matrix(rnorm(1000),nrow = 100) Z2 <- matrix(rnorm(1000), nrow = 100) Z3 <- matrix(rnorm(1000), nrow = 100) Z4 <- matrix(rnorm(1000), nrow = 100) Z5 <- matrix(rnorm(1000), nrow = 100) ##missing data a = sample(1:1000, 30, replace=FALSE) Z1[a] = NA Z2[62:65, 6:8] = NA a = sample(1:1000, 30, replace=FALSE) Z4[a] = NA Z <- list(list(Z1 = Z1, Z2 = Z2, Z3 = Z3), Z4 = Z4, Z5 = Z5) Y <- rbinom(n=100, size =1, prob =0.25) CoY <- matrix(rnorm(200), nrow = 100) CoG <- matrix(rnorm(200), nrow = 100) # i <- sample(1:2000, 1) # cat(paste("test1 - seed =", i, "\n")) ##needs work!!!!!##### ##needs work!!!!!##### ##needs work!!!!!##### invisible(capture.output(fit1 <- estimate_lucid(G = G, Z = Z, Y = Y, K = list(list(2,2,2),2,2), lucid_model = "serial", family = "binary", init_omic.data.model = "VVV", CoG = CoG, CoY = CoY, seed = i, useY = TRUE))) betas <- mean(unlist(fit1$res_Beta$Beta)) mus <- mean(unlist(fit1$res_Mu)) sigma <- mean(unlist(fit1$res_Sigma)) Gamma <- mean(unlist(fit1$res_Gamma)) # check parameters expect_equal(betas, -0.039, tolerance = 0.01) expect_equal(mus, 0.0115, tolerance = 0.01) expect_equal(sigma, 0.08, tolerance = 0.01) expect_equal(Gamma, -0.1857, tolerance = 0.01) expect_equal(class(fit1), "lucid_serial") Z <- list(Z1 = Z1, list(Z2 = Z2, Z3 = Z3), Z4 = Z4, Z5 = Z5) invisible(capture.output(fit2 <- estimate_lucid(G = G, Z = Z, Y = Y, K = list(2,list(2,2),2,2), CoG = CoG, CoY = CoY, lucid_model = "serial", family = "binary", init_omic.data.model = "VVV", seed = i, useY = TRUE))) betas <- mean(unlist(fit2$res_Beta)) mus <- mean(unlist(fit2$res_Mu)) sigma <- mean(unlist(fit2$res_Sigma)) Gamma <- mean(unlist(fit2$res_Gamma)) # check parameters expect_equal(betas, 0.0865, tolerance = 0.01) expect_equal(mus, 0.01195, tolerance = 0.01) expect_equal(sigma, 0.0803, tolerance = 0.01) expect_equal(Gamma, -0.1856, tolerance = 0.01) expect_equal(class(fit2), "lucid_serial") })