# LUCID - five omics, binary outcome test_that("check estimations of LUCID with binary outcome (K = 2,2,2)", { i <- 1008 set.seed(i) G <- matrix(rnorm(500), nrow = 100) Z1 <- matrix(rnorm(1000),nrow = 100) Z2 <- matrix(rnorm(1000), nrow = 100) Z3 <- matrix(rnorm(1000), nrow = 100) Z4 <- matrix(rnorm(1000), nrow = 100) Z5 <- matrix(rnorm(1000), nrow = 100) Z <- list(Z1 = Z1, list(Z2 = Z2, Z3 = Z3), Z4 = Z4, Z5 = Z5) Y <- rbinom(n=100, size =1, prob =0.45) #dont use Cog Coy here invisible(capture.output(fit1 <- estimate_lucid(G = G, Z = Z, Y = Y, K = list(2, list(2, 2), 2, 2), lucid_model = "serial", family = "binary", init_omic.data.model = "VVV", seed = i, useY = TRUE))) set.seed(i+1000) n_G <- matrix(rnorm(500), nrow = 100) n_Z1 <- matrix(rnorm(1000),nrow = 100) n_Z2 <- matrix(rnorm(1000), nrow = 100) n_Z3 <- matrix(rnorm(1000), nrow = 100) n_Z4 <- matrix(rnorm(1000), nrow = 100) n_Z5 <- matrix(rnorm(1000), nrow = 100) n_Z <- list(Z1 = n_Z1, list(Z2 = n_Z2, Z3 = n_Z3), Z4 = n_Z4, Z5 = n_Z5) n_Y <- rbinom(n=100, size =1, prob =0.45) #use training data pred1 <- predict_lucid(model = fit1, lucid_model = "serial", G = G, Z = Z, Y = Y, response = TRUE) expect_equal(fit1$inclusion.p, pred1$inclusion.p, tolerance = 0.05) expect_equal(class(pred1$pred.x), "list") expect_equal(max(pred1$pred.y), 1) expect_equal(mean(pred1$pred.y), 0.43) expect_equal(mean(pred1$inclusion.p[[1]]), 0.5) #use new data pred2 <- predict_lucid(model = fit1, lucid_model = "serial", G = n_G, Z = n_Z, Y = n_Y, response = TRUE) expect_equal(class(pred2$pred.x), "list") expect_equal(max(pred2$pred.y), 1) expect_equal(mean(pred2$pred.y), 0.31) expect_equal(mean(pred2$inclusion.p[[1]]), 0.5) #new data not using Y, and response = FALSE pred3 <- predict_lucid(model = fit1, lucid_model = "serial", G = n_G, Z = n_Z, Y = NULL, response = FALSE) expect_equal(class(pred3$pred.x), "list") expect_equal(max(pred3$pred.y), 0.567395, tolerance = 0.05) expect_equal(mean(pred3$pred.y), 0.4489129, tolerance = 0.05) expect_equal(mean(pred3$inclusion.p[[1]]), 0.5) })