# LUCID - one omics, normal outcome test_that("check estimations of LUCID with normal outcome (K = 2)", { # run LUCID model G <- sim_data$G[1:200, ] Z <- sim_data$Z[1:200, ] Y_normal <- sim_data$Y_normal[1:200, ] cov <- sim_data$Covariate[1:200, ] X <- sim_data$X[1:200] # i <- sample(1:2000, 1) i <- 1008 # cat(paste("test1 - seed =", i, "\n")) invisible(capture.output(fit1 <- lucid(G = G, Z = Z, Y = Y_normal, CoY = cov, lucid_model = "early", family = "normal", K = 2, seed = i))) pars <- fit1 beta_causal <- mean(pars$res_Beta[2, 2:5]) beta_non <- mean(pars$res_Beta[2, 6:10]) mu_causal <- mean(abs(pars$res_Mu[1, 1:5] - pars$res_Mu[2, 1:5])) mu_non <- mean(abs(pars$res_Mu[1, 6:10] - pars$res_Mu[2, 6:10])) gamma_causal <- as.numeric(abs(pars$res_Gamma$beta[1] - pars$res_Gamma$beta[2])) gamma_non <- as.numeric(mean(pars$res_Gamma$beta[3:4])) sigma <- mean(unlist(fit1$res_Sigma)) # check parameters expect_equal(beta_causal, log(2), tolerance = 0.2) expect_equal(beta_non, 0, tolerance = 0.1) expect_equal(mu_causal, 2, tolerance = 0.1) expect_equal(mu_non, 0, tolerance = 0.1) expect_equal(gamma_causal, 1, tolerance = 0.05) expect_equal(gamma_non, 0, tolerance = 0.05) expect_equal(sigma, 0.1048542, tolerance = 0.05) # check summary_lucid sum_fit1 <- summary_lucid(fit1) expect_equal(class(fit1), "early_lucid") expect_equal(class(sum_fit1), "sumlucid_early") }) test_that("check variable selection on G", { # run LUCID model G <- sim_data$G[1:200, ] Z <- sim_data$Z[1:200, ] Y_normal <- sim_data$Y_normal[1:200, ] cov <- sim_data$Covariate[1:200, ] X <- sim_data$X[1:200] # i <- sample(1:2000, 1) i <- 1008 # cat(paste("test2 - seed =", i, "\n")) invisible(capture.output(fit1 <- lucid(G = G, Z = Z, Y = Y_normal, CoY = cov, lucid_model = "early", family = "normal", K = 2, seed = i, Rho_G = 0.05))) # check parameters expect_equal(class(fit1$select$selectG), "logical") expect_equal(as.vector(fit1$select$selectG), rep(TRUE, 4)) }) test_that("check variable selection on Z", { # run LUCID model G <- sim_data$G[1:200, ] Z <- sim_data$Z[1:200, ] Y_normal <- sim_data$Y_normal[1:200, ] cov <- sim_data$Covariate[1:200, ] X <- sim_data$X[1:200] # i <- sample(1:2000, 1) i <- 1008 # cat(paste("test3 - seed =", i, "\n")) invisible(capture.output(fit1 <- lucid(G = G, Z = Z, Y = Y_normal, CoY = cov, lucid_model = "early", family = "normal", K = 2, seed = i, init_par = "random", Rho_Z_Mu = 13, Rho_Z_Cov = 0.05))) # check parameters expect_equal(class(fit1$select$selectG), "logical") })