# LUCID - three omics, binary outcome test_that("check estimations of LUCID with binary outcome (K = 2,2,2)", { i <- 1008 set.seed(i) G <- matrix(rnorm(500), nrow = 100) Z1 <- matrix(rnorm(1000),nrow = 100) Z2 <- matrix(rnorm(1000), nrow = 100) Z3 <- matrix(rnorm(1000), nrow = 100) Z <- list(Z1 = Z1, Z2 = Z2, Z3 = Z3) Y <- rbinom(n=100, size =1, prob =0.25) # i <- sample(1:2000, 1) # cat(paste("test1 - seed =", i, "\n")) invisible(capture.output(fit1 <- estimate_lucid(G = G, Z = Z, Y = Y, K = c(2, 2, 2), lucid_model = "parallel", family = "binary", seed = i, useY = TRUE))) betas <- fit1$res_Beta$Beta beta1 <- mean(unlist(betas[1])) beta2 <- mean(unlist(betas[2])) beta3 <- mean(unlist(betas[3])) mus <- fit1$res_Mu mu1 <- mean(unlist(mus[1])) mu2 <- mean(unlist(mus[2])) mu3 <- mean(unlist(mus[3])) sigma <- mean(unlist(fit1$res_Sigma)) Gamma <- mean(unlist(fit1$res_Gamma$Gamma)) # check parameters expect_equal(beta1, 0.00, tolerance = 0.01) expect_equal(beta2, 0.0719, tolerance = 0.01) expect_equal(beta3, 0.0278, tolerance = 0.01) expect_equal(mu1, -0.04, tolerance = 0.1) expect_equal(mu2, -0.013, tolerance = 0.1) expect_equal(mu3, -0.011, tolerance = 0.1) expect_equal(sigma, 0.087, tolerance = 0.01) expect_equal(Gamma, 0.63636, tolerance = 0.01) expect_equal(class(fit1), "lucid_parallel") })