test_that("default sample size is 5", { Foo <- take_sample(datasim_make(x <- exo(n, .3), y <- x + exo(n, .3))) expect_equal(nrow(Foo), 5) expect_equal(names(Foo), c("x", "y")) }) test_that("n parameter is used", { Foo <- take_sample(datasim_make(x ~ exo(n, sd = 0.5), y ~ x + exo(n, sd = 0.5)), n=10000) expect_equal(nrow(Foo), 10000) expect_equal(sum(is.na(Foo$y)), 0) }) test_that("exo() generates noise of the right magnitude", { Foo <- take_sample(datasim_make(x ~ exo(n, sd = 0.5), y ~ x + exo(n, sd = 0.5)), n = 10000) expect_lt(abs(sd(Foo$x) - 0.5), 0.1) expect_lt(abs(sd(Foo$y) - sqrt(0.5)), 0.1) }) test_that("runif() generates the uniform-distribution.", { Foo <- take_sample(datasim_make(x ~ runif(n, min = -2, max = 2), prob ~ punif(x, min = -2, max = 2)), n=10000) expect_gt(max(Foo$prob), 0.99) expect_lt(min(Foo$prob), 0.01) expect_lt(abs(mean(Foo$prob) - 0.5), 0.02) }) test_that("tdist() generates the t-distribution.", { Foo <- take_sample(datasim_make(x ~ rt(n, df = 1), prob ~ pt(x, df = 1)), n=10000) expect_gt(max(Foo$prob), 0.99) expect_lt(min(Foo$prob), 0.01) expect_lt(abs(mean(Foo$prob) - 0.5), 0.02) }) test_that("seq() generates a sequence", { Foo <- take_sample(datasim_make(x ~ seq(n)), n=100) expect_equal(Foo$x, 1:100) }) test_that("roll() draws a series of values from a set of levels.", { Foo <- take_sample(datasim_make(x ~ take_sample(1:6, n=n, replace = TRUE)), n=5000) expect_gt(mean(Foo$x == 6), 1/8) expect_gt(mean(Foo$x == 5), 1/8) expect_gt(mean(Foo$x == 4), 1/8) expect_gt(mean(Foo$x == 3), 1/8) expect_gt(mean(Foo$x == 2), 1/8) expect_gt(mean(Foo$x == 1), 1/8) }) test_that("replicate() runs the expression independently for each row", { Foo <- take_sample(datasim_make(x <- replicate(n, sum(runif(2)))), n=1000) # Should generate a triangular distribution between 0 and 2 expect_lt(mean(Foo$x < 0.5), 1/6) # about 1/8 of samples should be here expect_lt(mean(Foo$x > 1.5), 1/6) }) test_that("Constant patterns are replicated to have nrow", { Foo <- take_sample(datasim_make(x ~ rep(3, n)), n=10) expect_equal(nrow(Foo), 10) Foo2 <- take_sample(datasim_make(x <- 3), n=10) expect_equal(nrow(Foo), 10) Foo3 <- take_sample(datasim_make(x ~ rep(1:3, length.out=n)), n=10) expect_equal(sum(Foo3$x == 1), 4) Foo4 <- take_sample(datasim_make(x <- 1:3), n=10) expect_equal(sum(Foo4$x == 1), 4) }) test_that("Names starting with dots don't appear in the output.", { Foo <- take_sample(datasim_make(.genes ~ exo(n), x ~ .genes + exo(n), y ~ .genes + exo(n))) expect_equal(names(Foo), c("x", "y") ) }) test_that("block_by() generates a new categorical variable with correct levels", { Sim <- datasim_make(x <- exo(n), y <- block_by(x)) Foo <- take_sample(Sim, n = 100) expect_equal(sum(Foo$y == "treatment"), 50) Goo <- Foo |> arrange(x) |> mutate(row = row_number()) |> summarize(m=mean(row), .by = y) expect_true(all(Goo$m - 50 < 1)) Sim2 <- datasim_make(x <- exo(n), treatment <- block_by(x, levels = c("a", "b", "c")), block <- block_by(x, levels=c("a", "b", "c"), show_block=TRUE), z <- cat2value(treatment, a=1, b=2, c=3)) Foo <- take_sample(Sim2, n = 102) |> # sample size is multiple of number of blocking levels summarize(total = sum(z), .by = block) # There should be an a, b, c in each block, so z will be 6 in each block expect_equal(sum(Foo$total-6), 0) }) test_that("categorical generates levels with right probabilities", { Sim <- datasim_make(g <- categorical(n, a=1, b=2, c=3, d=4, exact=TRUE)) Foo <- take_sample(Sim, n=10000) expect_true(all(table(Foo$g) == c(1000, 2000, 3000, 4000))) set.seed(101) Sim <- datasim_make(g <- categorical(n=n, a=1, b=2, c=3, d=4, exact=FALSE)) Foo <- take_sample(Sim, n=10000) expect_true(all(table(Foo$g) == c(983, 1997, 2989, 4031))) }) test_that("bernoulli() can use log odds", { Sim <- datasim_make(x <- exo(n), z <- bernoulli(logodds = x)) Foo <- take_sample(Sim, n=10) expect_true(sum(Foo$z == 0) - 5000 < 200) # about equal numbers of ones and zeros }) test_that("each() computes separately for each row", { Sim <- datasim_make(k <- take_sample(1:10, n=n), y <- each(n * sum(1:k)), z <- each(sum(runif(k)))) Foo <- take_sample(Sim, n=10) expect_true(all(Foo$z / Foo$k < Foo$k)) }) test_that("arguments with = instead of <- produce a useful error message", { expect_error(datasim_make(x = rnorm(n, mean=0, sd=2)), regex = "not the equation sign") }) test_that("cycles are detected and produce a useful error message", { expect_error(datasim_make(x <- y, y <- -x), regex = "The graph has cycles") })