############################################### # Print a few things ############################################### args_00 <- names(formals(base::print)) args_01 <- names(formals(print.lrtest)) test_that("Arguments correct", { expect_true(all(args_00 == args_01)) }) ############# # one sample case one ############# set.seed(1) x <- rnorm(100, 0, 1) test <- gaussian_mu_one_sample(x, 0, "two.sided") test_that("works for one sample.", { expect_output(print(test)) }) ############# # one sample case two ############# test <- binomial_p_one_sample(52, 100, .50, "two.sided") test_that("works for one sample.", { expect_output(print(test)) }) ############# # one sample case three ############# set.seed(1) x <- rnorm(25, 0, 1) test <- empirical_mu_one_sample(x, 0, "two.sided") test_that("works for one sample.", { expect_output(print(test)) }) ############# # one way case one ############# set.seed(1) x <- rnorm(150, 1, 1) fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50)) fctr <- factor(fctr, levels = c("1", "2", "3")) test <- gaussian_mu_one_way(x, fctr, .95) test_that("works for one way.", { expect_output(print(test)) }) ############# # one way case two ############# set.seed(1) x <- rbinom(3, 50, .5) n <- rep(50, length(x)) fctr <- factor(seq(1, length(x))) test <- binomial_p_one_way(x, n, fctr, .95) test_that("works for one way.", { expect_output(print(test)) }) ############# # one way case three ############# set.seed(1) x <- rnorm(150, 1, 1) fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50)) fctr <- factor(fctr, levels = c("1", "2", "3")) test <- empirical_mu_one_way(x, fctr, .95) test_that("works for one way.", { expect_output(print(test)) })