### test-auto-practical.R --- ##---------------------------------------------------------------------- ## Author: Brice Ozenne ## Created: Jun 7 2021 (17:03) ## Version: ## Last-Updated: aug 1 2023 (15:11) ## By: Brice Ozenne ## Update #: 117 ##---------------------------------------------------------------------- ## ### Commentary: ## ### Change Log: ##---------------------------------------------------------------------- ## ### Code: if(FALSE){ library(testthat) library(numDeriv) library(lava) library(multcomp) library(emmeans) library(nlme) library(qqtest) library(ggplot2) library(lme4) library(lmerTest) library(LMMstar) } context("Check lmm on the example from the course with Julie") LMMstar.options(optimizer = "FS", method.numDeriv = "simple", precompute.moments = TRUE, columns.confint = c("estimate","se","df","lower","upper","p.value")) ## * Practical 1 test_that("practical 1 - gastricbypass",{ ## ** data data(gastricbypassL, package = "LMMstar") gastricbypassL$time <- factor(gastricbypassL$time, levels = c("3monthsBefore", "1weekBefore", "1weekAfter", "3monthsAfter"), labels = c("m3B","w1B","w1A","m3A")) gastricbypassL$visit <- as.numeric(gastricbypassL$visit) ## ** summarize summarize(glucagonAUC~time, data = gastricbypassL, na.rm=TRUE) summarize(glucagonAUC~time|id, data = gastricbypassL, na.rm=TRUE) ## ** compound symmetry eCS.gls <- gls(glucagonAUC~time, data=gastricbypassL, correlation=corCompSymm(form=~visit|id), na.action=na.exclude, control=glsControl(opt="optim")) eCS.lmm <- lmm(glucagonAUC~time, data=gastricbypassL, repetition = ~time|id, structure = "CS") expect_equal(as.double(logLik(eCS.gls)), as.double(logLik(eCS.lmm)), tol = 1e-6) ## ** unstructured with missing data eUN.gls <- gls(glucagonAUC~time, data=gastricbypassL, correlation=corSymm(form=~visit|id), weights=varIdent(form=~1|time), na.action=na.exclude, control=glsControl(opt="optim"), method = "REML") eUN.lmm <- lmm(glucagonAUC~time, data=gastricbypassL, repetition = ~time|id, structure = "UN", method.fit = "REML", trace = 0) ## check moments expect_equal(as.double(logLik(eUN.gls)), as.double(logLik(eUN.lmm)), tol = 1e-6) ## GS <- numDeriv::jacobian(func = function(p){logLik(eUN.lmm, p = p, transform.sigma = "none", transform.k = "none", transform.rho = "none")}, x = coef(eUN.lmm, transform.sigma = "none", transform.k = "none", transform.rho = "none", effects = "all")) GS <- rbind(c(0, 0, 0, 0, 0, 3e-08, 3e-08, -1.2e-07, -5.6e-07, -3.9e-07, 3e-08, 4.1e-07, -1.2e-07, 2.7e-07)) expect_equal(as.double(GS), as.double(score(eUN.lmm, transform.sigma = "none", transform.k = "none", transform.rho = "none", effects = "all")), tol = 1e-6) ## GS <- -numDeriv::jacobian(func = function(p){score(eUN.lmm, p = p, transform.sigma = "none", transform.k = "none", transform.rho = "none",effects = "all")}, x = coef(eUN.lmm, transform.sigma = "none", transform.k = "none", transform.rho = "none", effects = "all")) GS <- cbind(c(3.75e-06, 1.79e-06, -3e-08, 1.43e-06, 0, 8.477e-05, -1.843e-05, 9.63e-06, 6.084e-05, 0.00011196, -7.35e-06, -9.894e-05, -7.91e-06, 2.433e-05), c(1.79e-06, 6.88e-06, 1.06e-06, -8.4e-07, 0, 0.00027411, -0.00016572, 0.00035807, 0.00141665, 0.00130009, -0.00014701, -0.00131459, 0.00023644, -0.00049052), c(-3e-08, 1.06e-06, 1.04e-06, -9.1e-07, 0, 2.78e-06, -9.7e-05, 0.00029724, 0.00111002, 0.00085567, -0.00011219, -0.00090667, 0.00023771, -0.00051618), c(1.43e-06, -8.4e-07, -9.1e-07, 1.86e-06, 0, 1.38e-06, 8.377e-05, -0.00025882, -0.0009654, -0.00074127, 9.752e-05, 0.00078633, -0.00020768, 0.00045129), c(0, 0, 0, 0, 1.035e-05, 0.01115006, 0.00590608, 0.00848313, -0.03243156, -0.01404792, 0.01120771, 0.01041161, -0.00609246, -0.01245153), c(8.477e-05, 0.00027411, 2.78e-06, 1.38e-06, 0.01115006, 122.18555589, -1.45964668, 3.08816828, -68.07837646, 2.73876754, -1.51219029, 22.6795013, -13.32873148, -0.05416957), c(-1.843e-05, -0.00016572, -9.7e-05, 8.377e-05, 0.00590608, -1.45964668, 21.44038778, -7.18200571, 2.75807973, -14.88594103, -1.39025149, 10.84047319, 1.28521521, -14.70839091), c(9.63e-06, 0.00035807, 0.00029724, -0.00025882, 0.00848313, 3.08816828, -7.18200571, 37.93794573, -5.59355628, -4.13575786, 19.80175087, 4.43555263, -12.17911963, -18.41870059), c(6.084e-05, 0.00141665, 0.00111002, -0.0009654, -0.03243156, -68.07837647, 2.75807974, -5.59355628, 494.47865121, 170.86077633, -126.83250435, -160.48812254, 120.8592697, 52.61254837), c(0.00011196, 0.00130009, 0.00085567, -0.00074127, -0.01404792, 2.73876752, -14.88594103, -4.13575786, 170.86077634, 195.77649853, -137.8528703, -150.42850734, 105.91019906, 88.19349447), c(-7.35e-06, -0.00014701, -0.00011219, 9.752e-05, 0.01120771, -1.51219029, -1.39025149, 19.80175087, -126.83250437, -137.85287029, 182.19199363, 101.08254329, -138.37453473, -84.00691973), c(-9.894e-05, -0.00131459, -0.00090667, 0.00078633, 0.01041161, 22.67950128, 10.8404732, 4.43555263, -160.48812249, -150.42850737, 101.08254331, 155.69921616, -103.48119506, -60.02026461), c(-7.91e-06, 0.00023644, 0.00023771, -0.00020768, -0.00609246, -13.3287315, 1.28521521, -12.17911962, 120.85926971, 105.91019907, -138.37453473, -103.48119506, 144.14781706, 59.2349059), c(2.433e-05, -0.00049052, -0.00051618, 0.00045129, -0.01245153, -0.05416957, -14.70839091, -18.41870059, 52.61254837, 88.19349446, -84.00691974, -60.02026461, 59.23490589, 99.2783842) ) expect_equal(as.double(GS), as.double(information(eUN.lmm, transform.sigma = "none", transform.k = "none", transform.rho = "none", effects = "all")), tol = 1e-6) ## ** extract information capture.output(model.tables(eUN.lmm)) capture.output(summary(eUN.lmm, columns = "statistic")) capture.output(confint(eUN.lmm, effects = "all", backtransform = TRUE)) expect_equal(unname(coef(eUN.lmm, effects = "variance", transform.k = "sd")), unname(coef(eUN.lmm, effects = "variance")[1]*c(1,coef(eUN.lmm, effects = "variance")[-1])), tol = 1e-6) ## emmeans(eUN.lmm, specs = ~time) ## emmip(eUN.lmm, ~time) autoplot(eUN.lmm) apply(residuals(eUN.lmm, type = "normalized", format = "wide"),2,sd,na.rm=TRUE) cor(residuals(eUN.lmm, type = "normalized", format = "wide")[,-1], use = "pairwise") qqtest::qqtest(na.omit(residuals(eUN.lmm, type = "normalized"))) eUN.lmm_anova <- anova(eUN.lmm, effects = c("timew1A-timew1B=0"), ci = TRUE) capture.output(eUN.lmm_anova) capture.output(summary(eUN.lmm_anova)) expect_equal(eUN.lmm_anova$multivariate$df.denom, 19.24699, tol = 1e-1) ## Richardson }) ## * Practical 2 test_that("practical 2 - ncgs",{ data(ncgsL, package = "LMMstar") ncgsL$visit <- as.numeric(ncgsL$visit) ncgsL$highdose.time <- ncgsL$time ncgsL$highdose.time[ncgsL$group=="placebo"] <- "0" ncgsL$time <- relevel(as.factor(ncgsL$time), ref="0") ncgsL$highdose.time <- relevel(as.factor(ncgsL$highdose.time), ref="0") ncgsL$treatment <- factor(ncgsL$group, c("none","placebo","highdose")) ncgsL$treatment[ncgsL$time=="0"] <- "none" ncgsL$treatment2 <- factor(ncgsL$group, c("placebo","highdose")) ncgsL$treatment2[ncgsL$time=="0"] <- "placebo" ## ** unstructured with missing data e.gls <- gls(cholest~time+highdose.time, data=ncgsL, correlation=corSymm(form=~visit|id), weights=varIdent(form=~1|time), na.action=na.exclude, control=glsControl(opt='optim')) e.lmm <- lmm(cholest~time+highdose.time, data=ncgsL, repetition = ~time|id, structure = "UN", df = FALSE) e2.lmm <- suppressMessages(lmm(cholest~treatment*time, data=ncgsL, repetition = ~time|id, structure = "UN")) e3.lmm <- suppressMessages(lmm(cholest~treatment2*time, data=ncgsL, repetition = ~time|id, structure = "UN")) expect_equal(as.double(logLik(e.gls)), as.double(logLik(e.lmm)), tol = 1e-6) expect_equal(as.double(logLik(e.gls)), as.double(logLik(e2.lmm)), tol = 1e-6) expect_equal(as.double(logLik(e.gls)), as.double(logLik(e3.lmm)), tol = 1e-6) ## ** extract information confint(e2.lmm, effects = "all", backtransform = TRUE)[,c("estimate","lower","upper")] e2.lmm_anova <- anova(e2.lmm, effects = c("treatmenthighdose:time6-treatmentplacebo:time6=0","treatmenthighdose:time12-treatmentplacebo:time12=0"), ci = TRUE) expect_equal(e2.lmm_anova$multivariate$df.denom, 100.0411, tol = 1e-1) ## Richardson autoplot(e2.lmm) autoplot(e2.lmm, color = "group") autoplot(e2.lmm, color = "group", ci.alpha = 0.25) }) test_that("practical 2 - vitamin",{ data(vitaminL, package = "LMMstar") vitaminL$visit.num <- as.numeric(vitaminL$visit) ## define treatment vitaminL$treatment <- factor(vitaminL$group, c("none","control","vitamin")) vitaminL$treatment[vitaminL$time<=4] <- "none" ## define interaction manually vitaminL$vita.time <- vitaminL$time vitaminL$vita.time[vitaminL$group=="control" | vitaminL$time<=4] <- "1" ## ** fit unstructured e.gls <- gls(weight~visit+vita.time, data=vitaminL, correlation=corSymm(form=~visit.num|animal), weights=varIdent(form=~1|visit), na.action=na.exclude, control=glsControl(opt='optim')) e0.lmm <- suppressWarnings(lmm(weight~visit+vita.time, data=vitaminL, repetition = ~visit|animal, structure = "UN")) e.lmm <- suppressMessages(suppressWarnings(lmm(weight~treatment*visit, data=vitaminL, repetition = ~visit|animal, structure = "UN"))) expect_equal(as.double(logLik(e0.lmm)), as.double(logLik(e.lmm)), tol = 1e-6) expect_equal(as.double(logLik(e.lmm)), -234.28331772, tol = 1e-6) expect_equal(as.double(logLik(e.gls)), -232.08183621, tol = 1e-6) ## ** extract information autoplot(e.lmm, color = "group",ci =FALSE) qqtest::qqtest(residuals(e.lmm)) confint(e.lmm) e.lmm_anova <- anova(e.lmm, effects = "treatmentvitamin:visit6 - treatmentcontrol:visit6 = 0", ci = TRUE) ## expect_equal(e.lmm_anova$all$df.denom, 0.4972829, tol = 1e-1) ## Richardson }) ## * Practical 3 test_that("practical 3 - swabsL",{ data(swabsL, package = "LMMstar") ## ** unstructured eUN.gls <- gls(swabs ~ crowding + name, data = swabsL, correlation = corSymm(form = ~ as.numeric(name) | family), weights = varIdent(form = ~ 1 | name) ) eUN.lmm <- lmm(swabs ~ crowding + name, data = swabsL, structure = "UN", repetition = ~name|family) expect_equal(as.double(logLik(eUN.lmm)),as.double(logLik(eUN.gls)), tol = 1e-6) ## summary(eUN.lmm) sigma(eUN.lmm) ## ** compound symmetry eCS.lme <- lme(swabs ~ crowding + name, data = swabsL, random =~ 1 | family) eCS.lmm <- lmm(swabs ~ crowding + name, data = swabsL, structure = "CS", repetition = ~name|family) expect_equal(as.double(logLik(eCS.lmm)), as.double(logLik(eCS.lme)), tol = 1e-6) capture.output(summary(eCS.lmm)) sigma(eCS.lmm) autoplot(eCS.lmm) ## emmip(eCS.lmm, crowding~name) ## with interaction eCSI.lmm <- lmm(swabs ~ crowding * name, data = swabsL, structure = "CS", repetition = ~name|family) emmip(eCSI.lmm, crowding~name) eRI.lmm <- lmm(swabs ~ crowding * name + (1|family), data = swabsL) eCSI.lme <- lme(swabs ~ crowding * name, random =~ 1 | family, data = swabsL) GS <- as.data.frame(ranef(eCSI.lme, augFrame = TRUE)) expect_equal(as.double(GS[,1]),as.double(ranef(eRI.lmm)$estimate), tol = 1e-4) }) ## * Practical 4 test_that("practical 4 - bloodpressureL",{ data(bloodpressureL, package = "LMMstar") bloodpressureL$period.num <- as.numeric(bloodpressureL$period) bloodpressureL$treatment.num <- as.numeric(bloodpressureL$treatment) ## ** compound symmetry eCS.gls <- gls(duration ~ period + treatment, data = bloodpressureL, correlation = corCompSymm(form=~ 1 | id)) eCS.lmm <- lmm(duration ~ period + treatment, data = bloodpressureL, structure = "CS", repetition = ~ period | id) expect_equal(as.double(logLik(eCS.lmm)),as.double(logLik(eCS.gls)), tol = 1e-6) plot(eCS.lmm, color = "sequence", obs.alpha = 0.25, ci.alpha = 0.05) confint(eCS.gls) confint(eCS.lmm) emmip(eCS.lmm, treatment~period) ## ** unstructured eUNP.gls <- gls(duration ~ period + treatment, data = bloodpressureL, correlation = corSymm(form=~ period.num | id), weights = varIdent(form=~ 1|period), ) eUNP.lmm <- lmm(duration ~ period + treatment, data = bloodpressureL, structure = "UN", repetition = ~ period | id) expect_equal(as.double(logLik(eUNP.lmm)),as.double(logLik(eUNP.gls)), tol = 1e-6) capture.output(summary(eUNP.lmm)) eUNT.gls <- gls(duration ~ period + treatment, data = bloodpressureL, correlation = corSymm(form=~ treatment.num | id), weights = varIdent(form=~ 1|treatment), ) eUNT.lmm <- lmm(duration ~ period + treatment, data = bloodpressureL, structure = "UN", repetition = ~ treatment | id) capture.output(summary(eUNT.lmm)) expect_equal(as.double(logLik(eUNT.lmm)),as.double(logLik(eUNT.gls)), tol = 1e-6) }) ## * Practical 6 test_that("practical 6 - vasscoresL",{ data(vasscoresL, package = "LMMstar") summarize(vas ~ treatment, data = vasscoresL, na.rm = TRUE) summarize(vas ~ treatment|id, data = vasscoresL, na.rm = TRUE) summarize(vas ~ treatment+group|id, data = vasscoresL, na.rm = TRUE) ## ** model on all pairs: AB, AC, BC fit.CS <- lmm(vas~-1+treatment, data=vasscoresL, repetition=~treatment|id, structure="CS") capture.output(summary(fit.CS)) GS <- matrix(c(2099.98852585, 1675.79243303, 1675.79243303, 1675.79243303, 2099.98852585, 1675.79243303, 1675.79243303, 1675.79243303, 2099.98852585), nrow = 3, ncol = 3, dimnames = list(c("A", "B", "C"),c("A", "B", "C")) ) expect_equivalent(sigma(fit.CS), GS, tol = 1e-5) GS <- lmer(vas~-1+treatment+(1|id), data=vasscoresL) expect_equivalent(unname(coef(fit.CS)), unname(fixef(GS)), tol = 1e-5) expect_equivalent(unname(model.tables(fit.CS)$se), unname(summary(GS)$coef[,"Std. Error"]), tol = 1e-2) expect_equivalent(unname(model.tables(fit.CS)$df), unname(summary(GS)$coef[,"df"]), tol = 1e-2) ## autoplot(fit.CS) suppressWarnings(autoplot(fit.CS, obs.alpha = 0.1)) dummy.coef(fit.CS) fit.UN <- lmm(vas~-1+treatment, data=vasscoresL, repetition=~treatment|id, structure="UN") capture.output(summary(fit.UN)) ## GS <- lmm(vas~-1+treatment, data=vasscoresL, ## repetition=~treatment|id, structure="UN", ## control = list(optimizer = "FS")) GS <- matrix(c(2038.74222977, 1892.18702336, 1797.44635389, 1892.18702336, 2111.43949953, 1369.79020341, 1797.44635389, 1369.79020341, 2157.87873809), nrow = 3, ncol = 3, dimnames = list(c("A", "B", "C"),c("A", "B", "C")) ) expect_equivalent(sigma(fit.UN), GS, tol = 1e-5) vasscoreL.imputed <- fitted(fit.UN, impute = TRUE, keep.newdata = TRUE) set.seed(11) gg <- ggplot(vasscoreL.imputed, aes(x=treatment, y = vas, group = id)) gg + geom_jitter(aes(color = imputed), height = 1, width = 0) + geom_line() ## ** model some pairs: AB, AC ## IMPORTANT: check extraction of the residual variance-covariance matrix when not all pairs of time are analyzed vasscoreL.red <- vasscoresL[vasscoresL$group %in% c("AB","AC"),] fit.CS.red <- lmm(vas~-1+treatment, data=vasscoreL.red, repetition=~treatment|id, structure="CS") capture.output(summary(fit.CS.red)) GS <- matrix(c(2006.9354323, 1763.57527658, 1763.57527658, 1763.57527658, 2006.9354323, 1763.57527658, 1763.57527658, 1763.57527658, 2006.9354323), nrow = 3, ncol = 3, dimnames = list(c("A", "B", "C"),c("A", "B", "C")) ) expect_equivalent(sigma(fit.CS.red), GS, tol = 1e-5) fit.UN.red <- lmm(vas~-1+treatment, data=vasscoreL.red, repetition=~treatment|id, structure="UN", control = list(optimizer = "FS")) ## FS optimizer mandatory, GLS does something weird as it is able to estimate the correlation (B,C) capture.output(summary(fit.UN.red)) GS <- matrix(c(1996.68088251, 1926.29216631, 1573.59329163, 1926.29216631, 2231.4711806, NA, 1573.59329163, NA, 1753.88563313), nrow = 3, ncol = 3, dimnames = list(c("A", "B", "C"),c("A", "B", "C")) ) expect_equivalent(sigma(fit.UN.red), GS, tol = 1e-5) }) ##---------------------------------------------------------------------- ### test-auto-practical.R ends here