context("Prediction") test_that("predict.SSModel works",{ tol <- 1e-10 expect_warning(model1 <- SSModel(VanKilled ~ SSMtrend(1, 0.001) + SSMseasonal(period = 12, sea.type = "dummy", Q = 0), data = Seatbelts, distribution = "poisson"),NA) expect_warning(model2 <- SSModel(VanKilled ~ law + SSMtrend(1, 0.001) + SSMseasonal(period = 12, sea.type = "dummy", Q = 0), data = Seatbelts, distribution = "poisson"),NA) set.seed(1) expect_warning(predict(model1, n.ahead = 24, states = "trend", interval = "prediction", nsim=5), NA) set.seed(1) expect_warning(predict(model2, states = c("trend", "regression"), interval = "prediction", nsim=5, newdata = SSModel(ts(rep(NA,24),frequency=12) ~ law + SSMtrend(1, 0.001) + SSMseasonal(period = 12, sea.type = "dummy", Q = 0), data = data.frame(law=rep(1,24)), distribution = "poisson")), NA) set.seed(1) expect_warning(predict(model2, states = c("trend", "regression"), nsim=5, newdata = SSModel(ts(rep(NA,24),frequency=12) ~ law + SSMtrend(1, 0.001) + SSMseasonal(period = 12, sea.type = "dummy", Q = 0), data = data.frame(law=rep(1,24)), distribution = "poisson")), NA) expect_warning(predict(model2, states = c("trend", "regression"), interval = "confidence", nsim=5, newdata = SSModel(ts(rep(NA,24),frequency=12) ~ law + SSMtrend(1, 0.001) + SSMseasonal(period = 12, sea.type = "dummy", Q = 0), data = data.frame(law=rep(1,24)), distribution = "poisson")), NA) expect_warning(predict(model2, states = c("trend", "regression"), interval = "confidence", newdata = SSModel(ts(rep(NA,24),frequency=12) ~ law + SSMtrend(1, 0.001) + SSMseasonal(period = 12, sea.type = "dummy", Q = 0), data = data.frame(law=rep(1,24)), distribution = "poisson")), NA) })