library("JointAI") # Sys.setenv(IS_CHECK = "true") skip_on_cran() PBC2 <- PBC[match(unique(PBC$id), PBC$id), ] PBC2$center <- cut(as.numeric(PBC2$id), c(-Inf, seq(30, 270, 30), Inf)) PBC$center <- cut(as.numeric(PBC$id), c(-Inf, seq(30, 270, 30), Inf)) PBC2$futime2 <- PBC2$futime PBC2$status2 <- PBC2$status PBC2$futime2[1:10] <- NA PBC2$status2[11:20] <- NA run_survreg_models <- function() { sink(tempfile()) on.exit(sink()) invisible(force(suppressWarnings({ models <- list( # no covariates m0a = survreg_imp(Surv(futime, status != "censored") ~ 1, data = PBC2, n.adapt = 5, n.iter = 10, seed = 2020, warn = FALSE, mess = FALSE), # only complete m1a = survreg_imp(Surv(futime, status != "censored") ~ age + sex, data = PBC2, n.adapt = 5, n.iter = 10, seed = 2020, warn = FALSE, mess = FALSE), m1b = survreg_imp(Surv(futime, I(status != "censored")) ~ age + sex, data = PBC2, n.adapt = 5, n.iter = 10, seed = 2020, warn = FALSE, mess = FALSE), # only incomplete m2a = survreg_imp(Surv(futime, status != "censored") ~ copper, data = PBC2, n.adapt = 5, n.iter = 10, seed = 2020, warn = FALSE, mess = FALSE), # complex structures m3a = survreg_imp(Surv(futime, status != "censored") ~ copper + sex + age + abs(age - copper) + log(trig), data = PBC2, trunc = list(trig = c(0.0001, NA)), n.adapt = 5, n.iter = 10, seed = 2020, warn = FALSE, mess = FALSE), m3b = survreg_imp(Surv(futime, status != "censored") ~ copper + sex + age + abs(age - copper) + log(trig) + (1 | center), data = PBC2, trunc = list(trig = c(0.0001, NA)), n.adapt = 5, n.iter = 10, seed = 2020, warn = FALSE, mess = FALSE) ) } ) )) models } models <- run_survreg_models() models0 <- set0_list(models) test_that("models run", { for (k in seq_along(models)) { expect_s3_class(models[[k]], "JointAI") } }) test_that("there are no duplicate betas/alphas in the jagsmodel", { expect_null(unlist(lapply(models, find_dupl_parms))) }) test_that("MCMC is mcmc.list", { for (i in seq_along(models)) { expect_s3_class(models[[i]]$MCMC, "mcmc.list") } }) test_that("MCMC samples can be plottet", { for (k in seq_along(models)) { expect_silent(traceplot(models[[k]])) expect_silent(densplot(models[[k]])) expect_silent(plot(MC_error(models[[k]]))) } }) test_that("data_list remains the same", { expect_snapshot(lapply(models, "[[", "data_list")) }) test_that("jagsmodel remains the same", { expect_snapshot(lapply(models, "[[", "jagsmodel")) }) test_that("GRcrit and MCerror give same result", { expect_snapshot(lapply(models0, GR_crit, multivariate = FALSE)) expect_snapshot(lapply(models0, MC_error)) }) test_that("summary output remained the same", { expect_snapshot(lapply(models0, print)) expect_snapshot(lapply(models0, coef)) expect_snapshot(lapply(models0, confint)) expect_snapshot(lapply(models0, summary)) expect_snapshot(lapply(models0, function(x) coef(summary(x)))) }) test_that("prediction works", { expect_warning( expect_warning( predict(models$m3b, type = "lp")$fitted, "Prediction in multi-level settings"), "cases with missing covariates is not yet implemented") expect_warning( expect_warning( predict(models$m3b, type = "response")$fitted, "Prediction in multi-level settings"), "cases with missing covariates is not yet implemented") expect_s3_class(predict(models$m3b, type = "lp", warn = FALSE)$fitted, "data.frame") expect_s3_class(predict(models$m3b, type = "response", warn = FALSE)$fitted, "data.frame") }) test_that("residuals", { # residuals are not yet implemented expect_error(residuals(models$m3b, type = "working", warn = FALSE)) expect_error(residuals(models$m3b, type = "response", warn = FALSE)) }) test_that("model can (not) be plottet", { for (i in seq_along(models)) { expect_error(plot(models[[i]])) } }) test_that("wrong models give errors", { # time-varying covariate expect_error(survreg_imp(Surv(futime, status != "censored") ~ copper + sex + albumin + (1 | id) + (1 | center), timevar = "day", data = PBC, n.adapt = 5, n.iter = 10, seed = 2020, warn = FALSE, mess = FALSE)) # more than two event types expect_error(survreg_imp(Surv(futime, status) ~ copper + sex, data = PBC2, n.adapt = 5, n.iter = 10, seed = 2020, warn = FALSE, mess = FALSE)) # missing values in event time expect_error(survreg_imp(Surv(futime2, status != "censored") ~ copper + sex, data = PBC2, n.adapt = 5, n.iter = 10, seed = 2020, warn = FALSE, mess = FALSE)) # missing values in event status expect_error(survreg_imp(Surv(futime, status2 != "censored") ~ copper + sex, data = PBC2, n.adapt = 5, n.iter = 10, seed = 2020, warn = FALSE, mess = FALSE)) # wrong outcome expect_error(survreg_imp(futime ~ copper + sex, data = PBC2, n.adapt = 5, n.iter = 10, seed = 2020, warn = FALSE, mess = FALSE)) # no argument formula expect_error(survreg_imp(fixed = futime ~ copper + sex, data = PBC2, n.adapt = 5, n.iter = 10, seed = 2020, warn = FALSE, mess = FALSE)) }) # Sys.setenv(IS_CHECK = "")