library("JointAI") if (identical(Sys.getenv("NOT_CRAN"), "true")) { test_that('Joint model with ordinal covariate works', { test <- JM_imp(list(Surv(futime, status != 'censored') ~ stage + age + sex, stage ~ age + sex + day + (day | id)), data = PBC, timevar = "day", n.adapt = 3, n.iter = 3, warn = FALSE, seed = 2020, mess = FALSE) expect_s3_class(test, class = "JointAI") }) test_that('JM', { mod <- JM_imp(list(Surv(futime, status != "censored") ~ age + sex + chol + stage + hepato + (1 | id), hepato ~ day + (1 | id), chol ~ day + (1 | id), stage ~ age + (1 | id)), timevar = 'day', data = JointAI::PBC, warn = FALSE, n.iter = 5, n.adapt = 2) expect_s3_class(mod, 'JointAI') expect_output(list_models(mod)) expect_s3_class(parameters(mod), 'data.frame') expect_s3_class(summary(mod), 'summary.JointAI') }) test_that("fill_locf works", { locfdat <- JointAI:::fill_locf(data = JointAI::PBC, fixed = list(Surv(futime, status != "censored") ~ age + sex + hepato + platelet), auxvars = NULL, random = ~ 1 | id, timevar = 'day', groups = JointAI:::get_groups('id', JointAI::PBC)) expect_s3_class(locfdat, 'data.frame') expect_equal(colSums(is.na(locfdat[, c('hepato', 'platelet')])), c('hepato' = 0, 'platelet' = 0)) }) }