test_that("basic incidence plot", { cdm <- mockIncidencePrevalenceRef(sampleSize = 1000) cdm <- generateDenominatorCohortSet( cdm = cdm, name = "denominator", cohortDateRange = c(as.Date("2008-01-01"), as.Date("2018-01-01")) ) inc <- estimateIncidence( cdm = cdm, denominatorTable = "denominator", outcomeTable = "outcome" ) plot <- plotIncidence(inc) expect_true(ggplot2::is.ggplot(plot)) # with a different x axis cdm <- generateDenominatorCohortSet( cdm = cdm,name = "denominator", overwrite = TRUE, ageGroup = list( c(0, 30), c(31, 100) ) ) inc <- estimateIncidence( cdm = cdm, denominatorTable = "denominator", outcomeTable = "outcome", interval = "overall" ) plot <- plotIncidence(inc, x = "denominator_age_group") expect_true(ggplot2::is.ggplot(plot)) CDMConnector::cdm_disconnect(cdm) }) test_that("basic prevalence plot", { cdm <- mockIncidencePrevalenceRef(sampleSize = 1000) cdm <- generateDenominatorCohortSet( cdm = cdm, name = "denominator", cohortDateRange = c(as.Date("2008-01-01"), as.Date("2018-01-01")) ) prev <- estimatePrevalence( cdm = cdm, interval = "years", denominatorTable = "denominator", outcomeTable = "outcome" ) plot <- plotPrevalence(prev) expect_true(ggplot2::is.ggplot(plot)) # with a different x axis cdm <- generateDenominatorCohortSet( cdm = cdm,name = "denominator", overwrite = TRUE, cohortDateRange = c(as.Date("2010-01-01"), as.Date("2010-06-01")), ageGroup = list( c(0, 30), c(31, 100) ) ) prev <- estimatePrevalence( cdm = cdm, interval = "years", denominatorTable = "denominator", outcomeTable = "outcome", minCellCount = 0 ) plot <- plotPrevalence(prev, x = "denominator_age_group" ) expect_true(ggplot2::is.ggplot(plot)) CDMConnector::cdm_disconnect(cdm) }) test_that("plot facets", { cdm <- mockIncidencePrevalenceRef(sampleSize = 1000) cdm <- generateDenominatorCohortSet( cdm = cdm,name = "denominator", ageGroup = list( c(0, 30), c(31, 100) ) ) inc <- estimateIncidence( cdm = cdm, denominatorTable = "denominator", outcomeTable = "outcome" ) plot <- plotIncidence(inc, facet = "denominator_age_group") expect_true(ggplot2::is.ggplot(plot)) # multiple facet grouping cdm <- generateDenominatorCohortSet( cdm = cdm,name = "denominator", overwrite = TRUE, ageGroup = list( c(0, 30), c(31, 100) ), sex = c("Male", "Female") ) inc <- estimateIncidence( cdm = cdm, denominatorTable = "denominator", outcomeTable = "outcome" ) plot <- plotIncidence(inc, facet = c( "denominator_age_group", "denominator_sex" ) ) expect_true(ggplot2::is.ggplot(plot)) CDMConnector::cdm_disconnect(cdm) }) test_that("plot colour", { cdm <- mockIncidencePrevalenceRef(sampleSize = 1000) cdm <- generateDenominatorCohortSet( cdm = cdm,name = "denominator", overwrite = TRUE, ageGroup = list( c(0, 30), c(31, 100) ) ) inc <- estimateIncidence( cdm = cdm, denominatorTable = "denominator", outcomeTable = "outcome" ) plot <- plotIncidence(inc, colour = "denominator_age_group", colour_name = "Age group" ) expect_true(ggplot2::is.ggplot(plot)) # multiple grouping cdm <- generateDenominatorCohortSet( cdm = cdm,name = "denominator", overwrite = TRUE, ageGroup = list( c(0, 30), c(31, 100) ), sex = c("Male", "Female") ) inc <- estimateIncidence( cdm = cdm, denominatorTable = "denominator", outcomeTable = "outcome" ) plot <- plotIncidence(inc, colour = c( "denominator_age_group", "denominator_sex" ) ) expect_true(ggplot2::is.ggplot(plot)) CDMConnector::cdm_disconnect(cdm) })