library(ISwR) .make.epsf <- Sys.getenv("EPSF")=="y" ps.options(height=3.5, width=4.4, pointsize=8, horiz=F) if (.make.epsf) X11(height=3.5,width=4.4,pointsize=8) else postscript() dev.copy2eps <- function(...) invisible(grDevices::dev.copy2eps(...)) par(mar=c(4,4,3,2)+.1) options(width=66, useFancyQuotes="TeX") suppressWarnings(RNGversion("1.5.1")) #Yes, Kinderman-Ramage was buggy... set.seed(310367) #Rprof(interval=.001) plot(rnorm(500)) 2 + 2 exp(-2) rnorm(15) x <- 2 x x + x weight <- c(60, 72, 57, 90, 95, 72) weight height <- c(1.75, 1.80, 1.65, 1.90, 1.74, 1.91) bmi <- weight/height^2 bmi sum(weight) sum(weight)/length(weight) xbar <- sum(weight)/length(weight) weight - xbar (weight - xbar)^2 sum((weight - xbar)^2) sqrt(sum((weight - xbar)^2)/(length(weight) - 1)) mean(weight) sd(weight) t.test(bmi, mu=22.5) plot(height,weight) if (.make.epsf) dev.copy2eps(file="h-w.ps") plot(height, weight, pch=2) if (.make.epsf) dev.copy2eps(file="h-w-triangle.ps") hh <- c(1.65, 1.70, 1.75, 1.80, 1.85, 1.90) lines(hh, 22.5 * hh^2) if (.make.epsf) dev.copy2eps(file="h-w-line.ps") args(plot.default) c("Huey","Dewey","Louie") c('Huey','Dewey','Louie') c(T,T,F,T) bmi > 25 cat(c("Huey","Dewey","Louie")) cat("Huey","Dewey","Louie", "\n") cat("What is \"R\"?\n") c(42,57,12,39,1,3,4) x <- c(1, 2, 3) y <- c(10, 20) c(x, y, 5) x <- c(red="Huey", blue="Dewey", green="Louie") x names(x) c(FALSE, 3) c(pi, "abc") c(FALSE, "abc") seq(4,9) seq(4,10,2) 4:9 oops <- c(7,9,13) rep(oops,3) rep(oops,1:3) rep(1:2,c(10,15)) x <- 1:12 dim(x) <- c(3,4) x matrix(1:12,nrow=3,byrow=T) x <- matrix(1:12,nrow=3,byrow=T) rownames(x) <- LETTERS[1:3] x t(x) cbind(A=1:4,B=5:8,C=9:12) rbind(A=1:4,B=5:8,C=9:12) pain <- c(0,3,2,2,1) fpain <- factor(pain,levels=0:3) levels(fpain) <- c("none","mild","medium","severe") fpain as.numeric(fpain) levels(fpain) intake.pre <- c(5260,5470,5640,6180,6390, 6515,6805,7515,7515,8230,8770) intake.post <- c(3910,4220,3885,5160,5645, 4680,5265,5975,6790,6900,7335) mylist <- list(before=intake.pre,after=intake.post) mylist mylist$before d <- data.frame(intake.pre,intake.post) d d$intake.pre intake.pre[5] intake.pre[c(3,5,7)] v <- c(3,5,7) intake.pre[v] intake.pre[1:5] intake.pre[-c(3,5,7)] intake.post[intake.pre > 7000] intake.post[intake.pre > 7000 & intake.pre <= 8000] intake.pre > 7000 & intake.pre <= 8000 d <- data.frame(intake.pre,intake.post) d[5,1] d[5,] d[d$intake.pre>7000,] sel <- d$intake.pre>7000 sel d[sel,] d[1:2,] head(d) energy exp.lean <- energy$expend[energy$stature=="lean"] exp.obese <- energy$expend[energy$stature=="obese"] l <- split(energy$expend, energy$stature) l lapply(thuesen, mean, na.rm=T) sapply(thuesen, mean, na.rm=T) replicate(10,mean(rexp(20))) m <- matrix(rnorm(12),4) m apply(m, 2, min) tapply(energy$expend, energy$stature, median) intake$post sort(intake$post) order(intake$post) o <- order(intake$post) intake$post[o] intake$pre[o] intake.sorted <- intake[o,] save.image("ch1.RData") rm(list=ls()) while(search()[2] != "package:ISwR") detach() load("ch1.RData") .foo <- dev.copy2eps rm(dev.copy2eps) ls() dev.copy2eps <- .foo rm(height, weight) sink("myfile") ls() sink() attach(thuesen) blood.glucose search() detach() search() thue2 <- subset(thuesen,blood.glucose<7) thue2 thue3 <- transform(thuesen,log.gluc=log(blood.glucose)) thue3 thue4 <- within(thuesen,{ log.gluc <- log(blood.glucose) m <- mean(log.gluc) centered.log.gluc <- log.gluc - m rm(m) }) thue4 d <- par(mar=c(5,4,4,2)+.1) x <- runif(50,0,2) y <- runif(50,0,2) plot(x, y, main="Main title", sub="subtitle", xlab="x-label", ylab="y-label") text(0.6,0.6,"text at (0.6,0.6)") abline(h=.6,v=.6) for (side in 1:4) mtext(-1:4,side=side,at=.7,line=-1:4) mtext(paste("side",1:4), side=1:4, line=-1,font=2) if (.make.epsf) dev.copy2eps(file="layout.ps") par(d) plot(x, y, type="n", xlab="", ylab="", axes=F) points(x,y) axis(1) axis(2,at=seq(0.2,1.8,0.2)) box() title(main="Main title", sub="subtitle", xlab="x-label", ylab="y-label") set.seed(1234) #make it happen.... x <- rnorm(100) hist(x,freq=F) curve(dnorm(x),add=T) h <- hist(x, plot=F) ylim <- range(0, h$density, dnorm(0)) hist(x, freq=F, ylim=ylim) curve(dnorm(x), add=T) if (.make.epsf) dev.copy2eps(file="hist+norm.ps") hist.with.normal <- function(x, xlab=deparse(substitute(x)),...) { h <- hist(x, plot=F, ...) s <- sd(x) m <- mean(x) ylim <- range(0,h$density,dnorm(0,sd=s)) hist(x, freq=F, ylim=ylim, xlab=xlab, ...) curve(dnorm(x,m,s), add=T) } hist.with.normal(rnorm(200)) y <- 12345 x <- y/2 while (abs(x*x-y) > 1e-10) x <- (x + y/x)/2 x x^2 x <- y/2 repeat{ x <- (x + y/x)/2 if (abs(x*x-y) < 1e-10) break } x x <- seq(0, 1,.05) plot(x, x, ylab="y", type="l") for ( j in 2:8 ) lines(x, x^j) t.test(bmi, mu=22.5)$p.value print ## length(methods("print")) # quoted in text ## (this test zapped 2024-10-01 due to platform dependency) thuesen2 <- read.table( system.file("rawdata","thuesen.txt",package="ISwR"), header=T) thuesen2 levels(secretin$time) ## IGNORE_RDIFF_BEGIN # keep CRAN happy - this output is obviously system-dependent system.file("rawdata", "thuesen.txt", package="ISwR") ## IGNORE_RDIFF_END rm(list=ls()) while(search()[2] != "package:ISwR") detach() sample(1:40,5) sample(c("H","T"), 10, replace=T) sample(c("succ", "fail"), 10, replace=T, prob=c(0.9, 0.1)) 1/prod(40:36) prod(5:1)/prod(40:36) 1/choose(40,5) x <- seq(-4,4,0.1) plot(x,dnorm(x),type="l") if (.make.epsf) dev.copy2eps(file="bellcurve.ps") x <- 0:50 plot(x,dbinom(x,size=50,prob=.33),type="h") if (.make.epsf) dev.copy2eps(file="binomdist.ps") 1-pnorm(160,mean=132,sd=13) pbinom(16,size=20,prob=.5) 1-pbinom(15,size=20,prob=.5) 1-pbinom(15,20,.5)+pbinom(4,20,.5) xbar <- 83 sigma <- 12 n <- 5 sem <- sigma/sqrt(n) sem xbar + sem * qnorm(0.025) xbar + sem * qnorm(0.975) set.seed(310367) rnorm(10) rnorm(10) rnorm(10,mean=7,sd=5) rbinom(10,size=20,prob=.5) ## no data sets used by exercises rm(list=ls()) while(search()[2] != "package:ISwR") detach() x <- rnorm(50) mean(x) sd(x) var(x) median(x) quantile(x) pvec <- seq(0,1,0.1) pvec quantile(x,pvec) attach(juul) mean(igf1) mean(igf1,na.rm=T) sum(!is.na(igf1)) summary(igf1) summary(juul) detach(juul) juul$sex <- factor(juul$sex,labels=c("M","F")) juul$menarche <- factor(juul$menarche,labels=c("No","Yes")) juul$tanner <- factor(juul$tanner, labels=c("I","II","III","IV","V")) attach(juul) summary(juul) hist(x) if (.make.epsf) dev.copy2eps(file="hist.ps") mid.age <- c(2.5,7.5,13,16.5,17.5,19,22.5,44.5,70.5) acc.count <- c(28,46,58,20,31,64,149,316,103) age.acc <- rep(mid.age,acc.count) brk <- c(0,5,10,16,17,18,20,25,60,80) hist(age.acc,breaks=brk) if (.make.epsf) dev.copy2eps(file="hist-acc-right.ps") n <- length(x) plot(sort(x),(1:n)/n,type="s",ylim=c(0,1)) if (.make.epsf) dev.copy2eps(file="empdist.ps") qqnorm(x) if (.make.epsf) dev.copy2eps(file="qqnorm.ps") par(mfrow=c(1,2)) boxplot(IgM) boxplot(log(IgM)) par(mfrow=c(1,1)) if (.make.epsf) dev.copy2eps(file="boxplot-IgM.ps") attach(red.cell.folate) tapply(folate,ventilation,mean) tapply(folate,ventilation,sd) tapply(folate,ventilation,length) xbar <- tapply(folate, ventilation, mean) s <- tapply(folate, ventilation, sd) n <- tapply(folate, ventilation, length) cbind(mean=xbar, std.dev=s, n=n) tapply(igf1, tanner, mean) tapply(igf1, tanner, mean, na.rm=T) aggregate(juul[c("age","igf1")], list(sex=juul$sex), mean, na.rm=T) aggregate(juul[c("age","igf1")], juul["sex"], mean, na.rm=T) by(juul, juul["sex"], summary) attach(energy) expend.lean <- expend[stature=="lean"] expend.obese <- expend[stature=="obese"] par(mfrow=c(2,1)) hist(expend.lean,breaks=10,xlim=c(5,13),ylim=c(0,4),col="white") hist(expend.obese,breaks=10,xlim=c(5,13),ylim=c(0,4),col="grey") par(mfrow=c(1,1)) if (.make.epsf) dev.copy2eps(file="expend-hist-2on1.ps") boxplot(expend ~ stature) if (.make.epsf) dev.copy2eps(file="boxplots-expend-stat.ps") boxplot(expend.lean,expend.obese) opar <- par(mfrow=c(2,2), mex=0.8, mar=c(3,3,2,1)+.1) stripchart(expend ~ stature) stripchart(expend ~ stature, method="stack") stripchart(expend ~ stature, method="jitter") stripchart(expend ~ stature, method="jitter", jitter=.03) par(opar) if (.make.epsf) dev.copy2eps(file="stripcharts-expend-stat.ps") caff.marital <- matrix(c(652,1537,598,242,36,46,38,21,218 ,327,106,67), nrow=3,byrow=T) caff.marital colnames(caff.marital) <- c("0","1-150","151-300",">300") rownames(caff.marital) <- c("Married","Prev.married","Single") caff.marital names(dimnames(caff.marital)) <- c("marital","consumption") caff.marital as.data.frame(as.table(caff.marital)) table(sex) table(sex,menarche) table(menarche,tanner) xtabs(~ tanner + sex, data=juul) xtabs(~ dgn + diab + coma, data=stroke) ftable(coma + diab ~ dgn, data=stroke) t(caff.marital) tanner.sex <- table(tanner,sex) tanner.sex margin.table(tanner.sex,1) margin.table(tanner.sex,2) prop.table(tanner.sex,1) tanner.sex/sum(tanner.sex) total.caff <- margin.table(caff.marital,2) total.caff barplot(total.caff, col="white") if (.make.epsf) dev.copy2eps(file="simple-bar.ps") par(mfrow=c(2,2)) barplot(caff.marital, col="white") barplot(t(caff.marital), col="white") barplot(t(caff.marital), col="white", beside=T) barplot(prop.table(t(caff.marital),2), col="white", beside=T) par(mfrow=c(1,1)) if (.make.epsf) dev.copy2eps(file="mat-4-bar.ps") barplot(prop.table(t(caff.marital),2),beside=T, legend.text=colnames(caff.marital), col=c("white","grey80","grey50","black")) if (.make.epsf) dev.copy2eps(file="pretty-bar.ps") dotchart(t(caff.marital), lcolor="black") if (.make.epsf) dev.copy2eps(file="dotchart.ps") opar <- par(mfrow=c(2,2),mex=0.8, mar=c(1,1,2,1)) slices <- c("white","grey80","grey50","black") pie(caff.marital["Married",], main="Married", col=slices) pie(caff.marital["Prev.married",], main="Previously married", col=slices) pie(caff.marital["Single",], main="Single", col=slices) par(opar) if (.make.epsf) dev.copy2eps(file="pie.ps") rm(list=ls()) while(search()[2] != "package:ISwR") detach() daily.intake <- c(5260,5470,5640,6180,6390,6515, 6805,7515,7515,8230,8770) mean(daily.intake) sd(daily.intake) quantile(daily.intake) t.test(daily.intake,mu=7725) t.test(daily.intake,mu=7725) wilcox.test(daily.intake, mu=7725) attach(energy) energy t.test(expend~stature) t.test(expend~stature, var.equal=T) var.test(expend~stature) wilcox.test(expend~stature) attach(intake) intake post - pre t.test(pre, post, paired=T) t.test(pre, post) #WRONG! wilcox.test(pre, post, paired=T) rm(list=ls()) while(search()[2] != "package:ISwR") detach() attach(thuesen) lm(short.velocity~blood.glucose) summary(lm(short.velocity~blood.glucose)) summary(lm(short.velocity~blood.glucose)) plot(blood.glucose,short.velocity) abline(lm(short.velocity~blood.glucose)) if (.make.epsf) dev.copy2eps(file="velo-gluc-line.ps") lm.velo <- lm(short.velocity~blood.glucose) fitted(lm.velo) resid(lm.velo) options(error=expression(NULL)) plot(blood.glucose,short.velocity) lines(blood.glucose,fitted(lm.velo)) options(error=NULL) lines(blood.glucose[!is.na(short.velocity)],fitted(lm.velo)) cc <- complete.cases(thuesen) options(na.action=na.exclude) lm.velo <- lm(short.velocity~blood.glucose) fitted(lm.velo) segments(blood.glucose,fitted(lm.velo), blood.glucose,short.velocity) if (.make.epsf) dev.copy2eps(file="velo-gluc-seg.ps") plot(fitted(lm.velo),resid(lm.velo)) if (.make.epsf) dev.copy2eps(file="velo-gluc-resid.ps") qqnorm(resid(lm.velo)) if (.make.epsf) dev.copy2eps(file="velo-gluc-qqnorm.ps") predict(lm.velo) predict(lm.velo,int="c") predict(lm.velo,int="p") pred.frame <- data.frame(blood.glucose=4:20) pp <- predict(lm.velo, int="p", newdata=pred.frame) pc <- predict(lm.velo, int="c", newdata=pred.frame) plot(blood.glucose,short.velocity, ylim=range(short.velocity, pp, na.rm=T)) pred.gluc <- pred.frame$blood.glucose matlines(pred.gluc, pc, lty=c(1,2,2), col="black") matlines(pred.gluc, pp, lty=c(1,3,3), col="black") if (.make.epsf) dev.copy2eps(file="velo-gluc-final.ps") options(error=expression(NULL)) cor(blood.glucose,short.velocity) options(error=NULL) cor(blood.glucose,short.velocity,use="complete.obs") cor(thuesen,use="complete.obs") cor.test(blood.glucose,short.velocity) cor.test(blood.glucose,short.velocity,method="spearman") cor.test(blood.glucose,short.velocity,method="kendall") rm(list=ls()) while(search()[2] != "package:ISwR") detach() attach(red.cell.folate) summary(red.cell.folate) anova(lm(folate~ventilation)) attach(juul) anova(lm(igf1~tanner)) ## WRONG! juul$tanner <- factor(juul$tanner, labels=c("I","II","III","IV","V")) detach(juul) attach(juul) summary(tanner) anova(lm(igf1~tanner)) summary(lm(folate~ventilation)) pairwise.t.test(folate, ventilation, p.adj="bonferroni") pairwise.t.test(folate,ventilation) oneway.test(folate~ventilation) pairwise.t.test(folate,ventilation,pool.sd=F) xbar <- tapply(folate, ventilation, mean) s <- tapply(folate, ventilation, sd) n <- tapply(folate, ventilation, length) sem <- s/sqrt(n) stripchart(folate~ventilation, method="jitter", jitter=0.05, pch=16, vert=T) arrows(1:3,xbar+sem,1:3,xbar-sem,angle=90,code=3,length=.1) lines(1:3,xbar,pch=4,type="b",cex=2) if (.make.epsf) dev.copy2eps(file="oneway.ps") bartlett.test(folate~ventilation) kruskal.test(folate~ventilation) attach(heart.rate) heart.rate gl(9,1,36) gl(4,9,36,labels=c(0,30,60,120)) anova(lm(hr~subj+time)) interaction.plot(time, subj, hr) if (.make.epsf) dev.copy2eps(file="interaction-plot.ps") interaction.plot(ordered(time),subj,hr) friedman.test(hr~time|subj,data=heart.rate) attach(thuesen) lm.velo <- lm(short.velocity~blood.glucose) anova(lm.velo) rm(list=ls()) while(search()[2] != "package:ISwR") detach() prop.test(39,215,.15) binom.test(39,215,.15) lewitt.machin.success <- c(9,4) lewitt.machin.total <- c(12,13) prop.test(lewitt.machin.success,lewitt.machin.total) matrix(c(9,4,3,9),2) lewitt.machin <- matrix(c(9,4,3,9),2) fisher.test(lewitt.machin) chisq.test(lewitt.machin) caesar.shoe caesar.shoe.yes <- caesar.shoe["Yes",] caesar.shoe.total <- margin.table(caesar.shoe,2) caesar.shoe.yes caesar.shoe.total prop.test(caesar.shoe.yes,caesar.shoe.total) prop.trend.test(caesar.shoe.yes,caesar.shoe.total) caff.marital <- matrix(c(652,1537,598,242,36,46,38,21,218 ,327,106,67), nrow=3,byrow=T) colnames(caff.marital) <- c("0","1-150","151-300",">300") rownames(caff.marital) <- c("Married","Prev.married","Single") caff.marital chisq.test(caff.marital) chisq.test(caff.marital)$expected chisq.test(caff.marital)$observed E <- chisq.test(caff.marital)$expected O <- chisq.test(caff.marital)$observed (O-E)^2/E attach(juul) chisq.test(tanner,sex) rm(list=ls()) while(search()[2] != "package:ISwR") detach() curve(pt(x,25,ncp=3), from=0, to=6) abline(v=qt(.975,25)) if (.make.epsf) dev.copy2eps(file="noncentral-t.ps") pt(qt(.975,25),25,ncp=3) power.t.test(delta=0.5, sd=2, sig.level = 0.01, power=0.9) power.t.test(n=450, delta=0.5, sd=2, sig.level = 0.01) power.t.test(delta=0.5, sd=2, sig.level = 0.01, power=0.9, alt="one.sided") power.t.test(delta=10, sd=10*sqrt(2), power=0.85, type="paired") power.prop.test(power=.85,p1=.15,p2=.30) ### no data sets in exercises rm(list=ls()) while(search()[2] != "package:ISwR") detach() age <- subset(juul, age >= 10 & age <= 16)$age range(age) agegr <- cut(age, seq(10,16,2), right=F, include.lowest=T) length(age) table(agegr) agegr2 <- cut(age, seq(10,16,2), right=F) table(agegr2) q <- quantile(age, c(0, .25, .50, .75, 1)) q ageQ <- cut(age, q, include.lowest=T) table(ageQ) levels(ageQ) <- c("1st", "2nd", "3rd", "4th") levels(agegr) <- c("10-11", "12-13", "14-15") pain <- c(0,3,2,2,1) fpain <- factor(pain,levels=0:3, labels=c("none","mild","medium","severe")) text.pain <- c("none","severe", "medium", "medium", "mild") factor(text.pain) ftpain <- factor(text.pain) ftpain2 <- factor(ftpain, levels=c("none", "mild", "medium", "severe")) ftpain3 <- ftpain2 levels(ftpain3) <- list( none="none", intermediate=c("mild","medium"), severe="severe") ftpain3 ftpain4 <- ftpain2 levels(ftpain4) <- c("none","intermediate","intermediate","severe") ftpain4 stroke <- read.csv2( system.file("rawdata","stroke.csv", package="ISwR"), na.strings=".") names(stroke) <- tolower(names(stroke)) head(stroke) stroke <- transform(stroke, died = as.Date(died, format="%d.%m.%Y"), dstr = as.Date(dstr, format="%d.%m.%Y")) summary(stroke$died) summary(stroke$dstr) summary(stroke$died - stroke$dstr) head(stroke$died - stroke$dstr) o <- options(width=60) # minor cheat for visual purposes stroke <- transform(stroke, end = pmin(died, as.Date("1996-1-1"), na.rm = T), dead = !is.na(died) & died < as.Date("1996-1-1")) head(stroke) options(o); rm(o) stroke <- transform(stroke, obstime = as.numeric(end - dstr, units="days")/365.25) rawstroke <- read.csv2( system.file("rawdata","stroke.csv", package="ISwR"), na.strings=".") ix <- c("DSTR", "DIED") rawstroke[ix] <- lapply(rawstroke[ix], as.Date, format="%d.%m.%Y") head(rawstroke) ix <- 6:9 rawstroke[ix] <- lapply(rawstroke[ix], factor, levels=0:1, labels=c("No","Yes")) strokesub <- ISwR::stroke[1:10,2:3] strokesub strokesub <- transform(strokesub, event = !is.na(died)) strokesub <- transform(strokesub, obstime = ifelse(event, died-dstr, as.Date("1996-1-1") - dstr)) strokesub juulgrl <- subset(juul, sex==2, select=-c(testvol,sex)) juulboy <- subset(juul, sex==1, select=-c(menarche,sex)) juulgrl$sex <- factor("F") juulgrl$testvol <- NA juulboy$sex <- factor("M") juulboy$menarche <- NA juulall <- rbind(juulboy, juulgrl) names(juulall) levels(juulall$sex) head(nickel) head(ewrates) nickel <- transform(nickel, agr = trunc(agein/5)*5, ygr = trunc((dob+agein-1)/5)*5+1) mrg <- merge(nickel, ewrates, by.x=c("agr","ygr"), by.y=c("age","year")) head(mrg,10) head(alkfos) a2 <- alkfos names(a2) <- sub("c", "c.", names(a2)) names(a2) a.long <- reshape(a2, varying=2:8, direction="long") head(a.long) tail(a.long) o <- with(a.long, order(id, time)) head(a.long[o,], 10) a.long2 <- na.omit(a.long) attr(a.long2, "reshapeLong") <- NULL a.wide2 <- reshape(a.long2, direction="wide", v.names="c", idvar="id", timevar="time") head(a.wide2) l <- split(a.long$c, a.long$id) l[1:3] l2 <- lapply(l, function(x) x / x[1]) a.long$c.adj <- unsplit(l2, a.long$id) subset(a.long, id==1) a.long$c.adj <- ave(a.long$c, a.long$id, FUN = function(x) x / x[1]) all.equal(unsplit(l2, a.long$id), a.long$c.adj) l <- split(a.long, a.long$id) l2 <- lapply(l, transform, c.adj = c / c[1]) a.long2 <- unsplit(l2, a.long$id) all.equal(a.long2$c.adj, a.long$c.adj) head(nickel) entry <- pmax(nickel$agein, 60) exit <- pmin(nickel$ageout, 65) valid <- (entry < exit) entry <- entry[valid] exit <- exit[valid] cens <- (nickel$ageout[valid] > 65) nickel60 <- nickel[valid,] nickel60$icd[cens] <- 0 nickel60$agein <- entry nickel60$ageout <- exit nickel60$agr <- 60 nickel60$ygr <- with(nickel60, trunc((dob+agein-1)/5)*5+1) head(nickel60) trim <- function(start) { end <- start + 5 entry <- pmax(nickel$agein, start) exit <- pmin(nickel$ageout, end) valid <- (entry < exit) cens <- (nickel$ageout[valid] > end) result <- nickel[valid,] result$icd[cens] <- 0 result$agein <- entry[valid] result$ageout <- exit[valid] result$agr <- start result$ygr <- with(result, trunc((dob+agein-1)/5)*5+1) result } head(trim(60)) nickel.expand <- do.call("rbind", lapply(seq(20,95,5), trim)) head(nickel.expand) subset(nickel.expand, id==4) nickel.expand <- merge(nickel.expand, ewrates, by.x=c("agr","ygr"), by.y=c("age","year")) head(nickel.expand) all.equal(nickel.expand, ISwR::nickel.expand) rm(list=ls()) while(search()[2] != "package:ISwR") detach() par(mex=0.5) pairs(cystfibr, gap=0, cex.labels=0.9) if (.make.epsf) dev.copy2eps(file="cyst-fibr.ps",height=4.5,width=4.49) attach(cystfibr) if (exists("age",.GlobalEnv,inh=F)) rm(age) if (exists("height",.GlobalEnv,inh=F)) rm(height) if (exists("weight",.GlobalEnv,inh=F)) rm(weight) summary(lm(pemax~age+sex+height+weight+bmp+fev1+rv+frc+tlc)) 1-25.5^2/var(pemax) anova(lm(pemax~age+sex+height+weight+bmp+fev1+rv+frc+tlc)) 955.4+155.0+632.3+2862.2+1549.1+561.9+194.6+92.4 7002.9/8 875.36/648.7 1-pf(1.349407,8,15) ## Not command output: m1<-lm(pemax~age+sex+height+weight+bmp+fev1+rv+frc+tlc) m2<-lm(pemax~age) anova(m1,m2) summary(lm(pemax~age+sex+height+weight+bmp+fev1+rv+frc+tlc)) summary(lm(pemax~age+sex+height+weight+bmp+fev1+rv+frc)) summary(lm(pemax~age+sex+height+weight+bmp+fev1+rv)) summary(lm(pemax~age+sex+height+weight+bmp+fev1)) summary(lm(pemax~age+sex+height+weight+bmp)) summary(lm(pemax~age+height+weight+bmp)) summary(lm(pemax~height+weight+bmp)) summary(lm(pemax~weight+bmp)) summary(lm(pemax~weight)) summary(lm(pemax~age+weight+height)) summary(lm(pemax~age+height)) summary(lm(pemax~age)) summary(lm(pemax~height)) rm(list=ls()) while(search()[2] != "package:ISwR") detach() attach(cystfibr) summary(lm(pemax~height+I(height^2))) pred.frame <- data.frame(height=seq(110,180,2)) lm.pemax.hq <- lm(pemax~height+I(height^2)) predict(lm.pemax.hq,interval="pred",newdata=pred.frame) pp <- predict(lm.pemax.hq,newdata=pred.frame,interval="pred") pc <- predict(lm.pemax.hq,newdata=pred.frame,interval="conf") plot(height,pemax,ylim=c(0,200)) matlines(pred.frame$height,pp,lty=c(1,2,2),col="black") matlines(pred.frame$height,pc,lty=c(1,3,3),col="black") if (.make.epsf) dev.copy2eps(file="pemax-height-quad.ps") x <- runif(20) y <- 2*x+rnorm(20,0,0.3) summary(lm(y~x)) summary(lm(y~x-1)) anova(lm(y~x)) anova(lm(y~x-1)) model.matrix(pemax~height+weight) attach(red.cell.folate) model.matrix(folate~ventilation) attach(fake.trypsin) summary(fake.trypsin) anova(lm(trypsin~grpf)) anova(lm(trypsin~grp)) model1 <- lm(trypsin~grp) model2 <- lm(trypsin~grpf) anova(model1,model2) anova(lm(trypsin~grp+grpf)) xbar.trypsin <- tapply(trypsin,grpf,mean) stripchart(trypsin~grp, method="jitter", jitter=.1, vertical=T, pch=20) lines(1:6,xbar.trypsin,type="b",pch=4,cex=2,lty=2) abline(lm(trypsin~grp)) if (.make.epsf) dev.copy2eps(file="trypsin.ps") n <- c(32,137, 38,44,16,4) tryp.mean <- c(128,152,194,207,215,218) tryp.sd <-c(50.9,58.5,49.3,66.3,60,14) gr<-1:6 anova(lm(tryp.mean~gr+factor(gr),weights=n)) sum(tryp.sd^2*(n-1)) sum(n-1) sum(tryp.sd^2*(n-1))/sum(n-1) 206698/3318.007 # F statistic for gr 1-pf(206698/3318.007,1,265) # p-value 4351/3318.007 # F statistic for factor(gr) 1-pf(4351/3318.007,4,265) # p-value attach(coking) anova(lm(time~width*temp)) tapply(time,list(width,temp),mean) hellung summary(hellung) hellung$glucose <- factor(hellung$glucose, labels=c("Yes","No")) summary(hellung) attach(hellung) plot(conc,diameter,pch=as.numeric(glucose)) locator <- function(n)list(x=4e5,y=26) legend(locator(n=1),legend=c("glucose","no glucose"),pch=1:2) if (.make.epsf) dev.copy2eps(file="hellung-raw.ps") plot(conc,diameter,pch=as.numeric(glucose),log="x") if (.make.epsf) dev.copy2eps(file="hellung-logx.ps") plot(conc,diameter,pch=as.numeric(glucose),log="xy") tethym.gluc <- hellung[glucose=="Yes",] tethym.nogluc <- hellung[glucose=="No",] lm.nogluc <- lm(log10(diameter)~ log10(conc),data=tethym.nogluc) lm.gluc <- lm(log10(diameter)~ log10(conc),data=tethym.gluc) abline(lm.nogluc) abline(lm.gluc) if (.make.epsf) dev.copy2eps(file="hellung-loglog-lines.ps") summary(lm(log10(diameter)~ log10(conc), data=tethym.gluc)) summary(lm(log10(diameter)~ log10(conc), data=tethym.nogluc)) summary(lm(log10(diameter)~log10(conc)*glucose)) summary(lm(log10(diameter)~log10(conc)+glucose)) var.test(lm.gluc,lm.nogluc) anova(lm(log10(diameter)~ log10(conc)*glucose)) anova(lm(log10(diameter)~glucose+log10(conc))) anova(lm(log10(diameter)~log10(conc)+ glucose)) t.test(log10(diameter)~glucose) attach(thuesen) options(na.action="na.exclude") lm.velo <- lm(short.velocity~blood.glucose) opar <- par(mfrow=c(2,2), mex=0.6, mar=c(4,4,3,2)+.3) plot(lm.velo, which=1:4) par(opar) if (.make.epsf) dev.copy2eps(file="regr-diag.ps") opar <- par(mfrow=c(2,2), mex=0.6, mar=c(4,4,3,2)+.3) plot(rstandard(lm.velo)) plot(rstudent(lm.velo)) plot(dffits(lm.velo),type="l") matplot(dfbetas(lm.velo),type="l", col="black") lines(sqrt(cooks.distance(lm.velo)), lwd=2) par(opar) if (.make.epsf) dev.copy2eps(file="regr-diag2.ps") summary(lm(short.velocity~blood.glucose, subset=-13)) cookd <- cooks.distance(lm(pemax~height+weight)) cookd <- cookd/max(cookd) cook.colors <- gray(1-sqrt(cookd)) plot(height,weight,bg=cook.colors,pch=21,cex=1.5) points(height,weight,pch=1,cex=1.5) if (.make.epsf) dev.copy2eps(file="cookd-cyst-fibr.ps") attach(secher) rst <- rstudent(lm(log10(bwt)~log10(ad)+log10(bpd))) range(rst) rst <- rst/3.71 plot(ad,bpd,log="xy",bg=gray(1-abs(rst)), pch=ifelse(rst>0,24,25), cex=1.5) if (.make.epsf) dev.copy2eps(file="rstudent-secher.ps") rm(list=ls()) while(search()[2] != "package:ISwR") detach() no.yes <- c("No","Yes") smoking <- gl(2,1,8,no.yes) obesity <- gl(2,2,8,no.yes) snoring <- gl(2,4,8,no.yes) n.tot <- c(60,17,8,2,187,85,51,23) n.hyp <- c(5,2,1,0,35,13,15,8) data.frame(smoking,obesity,snoring,n.tot,n.hyp) expand.grid(smoking=no.yes, obesity=no.yes, snoring=no.yes) hyp.tbl <- cbind(n.hyp,n.tot-n.hyp) hyp.tbl glm(hyp.tbl~smoking+obesity+snoring,family=binomial("logit")) glm(hyp.tbl~smoking+obesity+snoring,binomial) prop.hyp <- n.hyp/n.tot glm.hyp <- glm(prop.hyp~smoking+obesity+snoring, binomial,weights=n.tot) glm(hyp.tbl~smoking+obesity+snoring, binomial("logit")) glm.hyp <- glm(hyp.tbl~smoking+obesity+snoring,binomial) summary(glm.hyp) summary(glm(formula = hyp.tbl ~ smoking + obesity + snoring, family = binomial)) glm.hyp <- glm(hyp.tbl~obesity+snoring,binomial) summary(glm.hyp) glm.hyp <- glm(hyp.tbl~smoking+obesity+snoring,binomial) anova(glm.hyp, test="Chisq") glm.hyp <- glm(hyp.tbl~snoring+obesity+smoking,binomial) anova(glm.hyp, test="Chisq") glm.hyp <- glm(hyp.tbl~obesity+snoring,binomial) anova(glm.hyp, test="Chisq") drop1(glm.hyp, test="Chisq") caesar.shoe shoe.score <- 1:6 shoe.score summary(glm(t(caesar.shoe)~shoe.score,binomial)) anova(glm(t(caesar.shoe)~shoe.score,binomial)) caesar.shoe.yes <- caesar.shoe["Yes",] caesar.shoe.no <- caesar.shoe["No",] caesar.shoe.total <- caesar.shoe.yes+caesar.shoe.no prop.trend.test(caesar.shoe.yes,caesar.shoe.total) prop.test(caesar.shoe.yes,caesar.shoe.total) confint(glm.hyp) confint.default(glm.hyp) library(MASS) plot(profile(glm.hyp)) if (.make.epsf) dev.copy2eps(file="profile-hyp.ps") exp(cbind(OR=coef(glm.hyp), confint(glm.hyp))) juul$menarche <- factor(juul$menarche, labels=c("No","Yes")) juul$tanner <- factor(juul$tanner) juul.girl <- subset(juul,age>8 & age<20 & complete.cases(menarche)) attach(juul.girl) summary(glm(menarche~age,binomial)) summary(glm(menarche~age+tanner,binomial)) drop1(glm(menarche~age+tanner,binomial),test="Chisq") predict(glm.hyp) predict(glm.hyp, type="response") glm.menarche <- glm(menarche~age, binomial) Age <- seq(8,20,.1) newages <- data.frame(age=Age) predicted.probability <- predict(glm.menarche, newages,type="resp") plot(predicted.probability ~ Age, type="l") if (.make.epsf) dev.copy2eps(file="menarche-fit.ps") fitted(glm.hyp) prop.hyp fitted(glm.hyp)*n.tot data.frame(fit=fitted(glm.hyp)*n.tot,n.hyp,n.tot) age.group <- cut(age,c(8,10,12,13,14,15,16,18,20)) tb <- table(age.group,menarche) tb rel.freq <- prop.table(tb,1)[,2] rel.freq points(rel.freq ~ c(9,11,12.5,13.5,14.5,15.5,17,19),pch=5) if (.make.epsf) dev.copy2eps(file="menarche-fit+obs.ps") age.gr <- cut(age,c(8,12,13,14,20)) summary(glm(menarche~age+age.gr,binomial)) anova(glm(menarche~age+age.gr,binomial)) 1-pchisq(8.058,3) anova(glm(menarche~age+I(age^2)+I(age^3)+age.gr,binomial)) glm.menarche <- glm(menarche~age+I(age^2)+I(age^3), binomial) predicted.probability <- predict(glm.menarche, newages, type="resp") plot(predicted.probability ~ Age, type="l") points(rel.freq~c(9,11,12.5,13.5,14.5,15.5,17,19), pch=5) if (.make.epsf) dev.copy2eps(file="menarche-cubic.ps") rm(list=ls()) while(search()[2] != "package:ISwR") detach() library(survival) attach(melanom) names(melanom) Surv(days, status==1) survfit(Surv(days,status==1)~1) surv.all <- survfit(Surv(days,status==1)~1) summary(surv.all) plot(surv.all) if (.make.epsf) dev.copy2eps(file="surv-all.ps") surv.bysex <- survfit(Surv(days,status==1)~sex) plot(surv.bysex) if (.make.epsf) dev.copy2eps(file="surv-bysex.ps") plot(surv.bysex, conf.int=T, col=c("black","gray")) survdiff(Surv(days,status==1)~sex) survdiff(Surv(days,status==1)~sex+strata(ulc)) summary(coxph(Surv(days,status==1)~sex)) summary(coxph(Surv(days,status==1)~sex+log(thick)+strata(ulc))) plot(survfit(coxph(Surv(days,status==1)~ log(thick)+sex+strata(ulc)))) if (.make.epsf) dev.copy2eps(file="surv-cox.ps") rm(list=ls()) while(search()[2] != "package:ISwR") detach() names(eba1977) attach(eba1977) fit <- glm(cases~city+age+offset(log(pop)), family=poisson) summary(fit) min(fitted(fit)) pchisq(deviance(fit), df.residual(fit), lower=F) pchisq(23.45, 15, lower=F) drop1(fit, test="Chisq") fit2 <- glm(cases~(city=="Fredericia")+age+offset(log(pop)), family=poisson) anova(fit, fit2, test="Chisq") drop1(fit2, test="Chisq") summary(fit2) cf <- coefficients(summary(fit2)) est <- cf[,1] s.e. <- cf[,2] rr <- exp(cbind(est, est - s.e.*qnorm(.975), est + s.e.*qnorm(.975) )) colnames(rr) <- c("RateRatio", "CI.lo","CI.hi") rr exp(cbind(coef(fit2), confint(fit2))) head(nickel.expand) subset(nickel.expand, id==325) nickel.expand <- within(nickel.expand, lung.cancer <- as.numeric(icd %in% c(162,163))) attach(nickel.expand) pyr <- tapply(ageout-agein,list(ygr,agr), sum) print(round(pyr), na.print="-") count <- tapply(lung.cancer, list(ygr, agr), sum) print(count, na.print="-") print(round(count/pyr*1000, 1), na.print="-") expect.count <- tapply(lung/1e6*(ageout-agein), list(ygr,agr), sum) print(round(expect.count, 1), na.print="-") expect.tot <- sum(lung/1e6*(ageout-agein)) expect.tot count.tot <- sum(lung.cancer) count.tot count.tot/expect.tot fit <- glm(lung.cancer ~ 1, poisson, offset = log((ageout-agein)*lung/1e6)) summary(fit) exp(coef(fit)) tapply(lung.cancer, agr, sum) tapply(lung.cancer, ygr, sum) detach() nickel.expand <- within(nickel.expand,{ A <- factor(agr) Y <- factor(ygr) lv <- levels(A) lv[1:6] <- "< 50" lv[11:13] <- "70+" levels(A) <- lv lv <- levels(Y) lv[7:10] <- "1961ff" levels(Y) <- lv rm(lv) }) attach(nickel.expand) fit <- glm(lung.cancer ~ A + Y, poisson, offset=log((ageout-agein)*lung/1e6)) drop1(fit, test="Chisq") fit <- glm(lung.cancer ~ Y - 1, poisson, offset=log((ageout-agein)*lung/1e6)) summary(fit) round(exp(coef(fit)), 1) expect.count <- tapply(lung/1e6*(ageout-agein), Y, sum) count <- tapply(lung.cancer, Y, sum) cbind(count=count, expect=round(expect.count,1), SMR= round(count/expect.count, 1)) detach() nickel.expand <- within(nickel.expand,{ TFE <- cut(agein-age1st, c(0,20,30,40,50,100), right=F) AFE <- cut(age1st, c(0, 20, 27.5, 35, 100), right=F) YFE <- cut(dob + age1st, c(0, 1910, 1915, 1920, 1925),right=F) EXP <- cut(exposure, c(0, 0.5, 4.5, 8.5, 12.5, 25), right=F) }) attach(nickel.expand) fit <- glm(lung.cancer ~ TFE + AFE + YFE + EXP, poisson, offset=log((ageout-agein)*lung/1e6)) drop1(fit, test="Chisq") summary(fit) rm(list=ls()) while(search()[2] != "package:ISwR") detach() ## IGNORE_RDIFF_BEGIN t <- 0:10 y <- rnorm(11, mean=5*exp(-t/5), sd=.2) plot(y ~ t) if (.make.epsf) dev.copy2eps(file="nonlin-sim.ps") nlsout <- nls(y ~ A*exp(-alpha*t), start=c(A=2, alpha=0.05)) summary(nlsout) attach(subset(juul2, age<20 & age>5 & sex==1)) plot(height ~ age) if (.make.epsf) dev.copy2eps(file="juul-a-h.ps") plot(log(5.3-log(height))~age) if (.make.epsf) dev.copy2eps(file="gomp-dif.ps") lm(log(5.3-log(height))~age) fit <- nls(height~alpha*exp(-beta*exp(-gamma*age)), start=c(alpha=exp(5.3),beta=exp(0.42),gamma=0.15)) summary(fit) plot(age, height) newage <- seq(5,20,length=500) lines(newage, predict(fit,newdata=data.frame(age=newage)),lwd=2) if (.make.epsf) dev.copy2eps(file="gompertz.ps") fit <- nls(log(height)~log(alpha*exp(-beta*exp(-gamma*age))), start=c(alpha=exp(5.3),beta=exp(.12),gamma=.12)) summary(fit) plot(age, log(height)) lines(newage, predict(fit,newdata=data.frame(age=newage)),lwd=2) if (.make.epsf) dev.copy2eps(file="log-gompertz.ps") # count quoted in text, subtract 1 for SSD() length(ls(pattern="SS.*", "package:stats"))-1 summary(nls(height~SSgompertz(age, Asym, b2, b3))) cf <- coef(nls(height ~ SSgompertz(age, Asym, b2, b3))) summary(nls(log(height) ~ log(as.vector(SSgompertz(age,Asym, b2, b3))), start=as.list(cf))) par(mfrow=c(3,1)) plot(profile(fit)) if (.make.epsf) dev.copy2eps(file="gomp-prof.ps") confint(fit) confint.default(fit) ## IGNORE_RDIFF_END rm(list=ls()) while(search()[2] != "package:ISwR") detach()