mod <- " # intercept and slope with fixed coefficients i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4 s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4 # regressions i ~ x1 + x2 s ~ x1 + x2 # time-varying covariates t1 ~ c1 t2 ~ c2 t3 ~ c3 t4 ~ c4 " dat <- lavaan::Demo.growth fit_lav <- lavaan::cfa(mod, dat) NSAMP <- 3 test_that("Method: skewnorm", { expect_no_error({ fit <- agrowth( mod, dat, marginal_method = "skewnorm", verbose = FALSE, nsamp = NSAMP ) }) expect_no_error(out <- capture.output(summary(fit))) expect_s4_class(fit, "INLAvaan") # expect_equal(coef(fit), coef(fit_lav), tolerance = 0.1) expect_equal(fit@optim$dx, rep(0, length(coef(fit))), tolerance = 1e-3) }) test_that("Method: asymgaus", { expect_no_error({ fit <- agrowth( mod, dat, marginal_method = "asymgaus", verbose = FALSE, nsamp = NSAMP ) }) expect_no_error(out <- capture.output(summary(fit))) expect_s4_class(fit, "INLAvaan") # expect_equal(coef(fit), coef(fit_lav), tolerance = 0.1) }) test_that("Method: marggaus", { expect_no_error({ fit <- agrowth( mod, dat, marginal_method = "marggaus", verbose = FALSE, nsamp = NSAMP ) }) expect_no_error(out <- capture.output(summary(fit))) expect_s4_class(fit, "INLAvaan") # expect_equal(coef(fit), coef(fit_lav), tolerance = 0.1) }) test_that("Method: sampling", { expect_no_error({ fit <- agrowth( mod, dat, marginal_method = "sampling", verbose = FALSE, nsamp = NSAMP ) }) expect_no_error(out <- capture.output(summary(fit))) expect_s4_class(fit, "INLAvaan") # expect_equal(coef(fit), coef(fit_lav), tolerance = 0.1) }) test_that("Gradients are correct (Finite Difference Check)", { suppressMessages( tmp <- capture.output(fit <- agrowth(mod, dat, test = "none", debug = TRUE)) ) test_df <- read.table(text = tmp, skip = 1)[, -1] colnames(test_df) <- c("fd", "analytic", "diff") expect_equal( as.numeric(test_df$fd), as.numeric(test_df$diff), tolerance = 1e-3 ) expect_equal( as.numeric(test_df$diff), rep(0, nrow(test_df)), tolerance = 1e-3 ) }) ################################################################################ ## CHECK AGAINST MCMC ########################################################## ################################################################################ testthat::skip_on_ci() testthat::skip_on_cran() testthat::skip_if_not(interactive()) library(blavaan) future::plan("multisession", workers = future::availableCores() - 2) fit_blav <- bgrowth( mod, dat, bcontrol = list(cores = 3), burnin = 1000, sample = 2000 ) fit_inl1 <- agrowth( mod, dat, marginal_method = "skewnorm", debug = TRUE, test = "none" ) fit_inl2 <- agrowth( mod, dat, marginal_method = "asymgaus", debug = TRUE, test = "none" ) fit_inl3 <- agrowth( mod, dat, marginal_method = "sampling", debug = TRUE, test = "none" ) res <- compare_mcmc( fit_blav, "skewnorm" = fit_inl1, "asymgaus" = fit_inl2, "sampling" = fit_inl3 ) print(res$p_compare) print(res$p_errors) print(res$metrics_df, n = 1000)