dat <- lavaan::HolzingerSwineford1939 mod <- " visual =~ x1 + x2 + x3 textual =~ x4 + x5 + x6 speed =~ x7 + x8 + x9 " fit_lav <- lavaan::cfa(mod, dat) NSAMP <- 3 STDLV <- FALSE test_that("Method: skewnorm", { expect_no_error({ fit <- acfa( mod, dat, marginal_method = "skewnorm", verbose = FALSE, nsamp = NSAMP, std.lv = STDLV ) }) expect_no_error(out <- capture.output(summary(fit))) expect_s4_class(fit, "INLAvaan") expect_equal(coef(fit), coef(fit_lav), tolerance = 0.1) expect_equal(fit@optim$dx, rep(0, length(coef(fit))), tolerance = 1e-3) }) test_that("Method: asymgaus", { expect_no_error({ fit <- acfa( mod, dat, marginal_method = "asymgaus", verbose = FALSE, nsamp = NSAMP, std.lv = STDLV ) }) expect_no_error(out <- capture.output(summary(fit))) expect_s4_class(fit, "INLAvaan") expect_equal(coef(fit), coef(fit_lav), tolerance = 0.1) }) test_that("Method: marggaus", { expect_no_error({ fit <- acfa( mod, dat, marginal_method = "marggaus", verbose = FALSE, nsamp = NSAMP, std.lv = STDLV ) }) expect_no_error(out <- capture.output(summary(fit))) expect_s4_class(fit, "INLAvaan") expect_equal(coef(fit), coef(fit_lav), tolerance = 0.1) }) test_that("Method: sampling", { expect_no_error({ fit <- acfa( mod, dat, marginal_method = "sampling", verbose = FALSE, nsamp = NSAMP, std.lv = STDLV ) }) expect_no_error(out <- capture.output(summary(fit))) expect_s4_class(fit, "INLAvaan") expect_equal(coef(fit), coef(fit_lav), tolerance = 0.1) }) test_that("Gradients are correct (Finite Difference Check)", { suppressMessages( tmp <- capture.output(fit <- acfa(mod, dat, test = "none", debug = TRUE)) ) test_df <- read.table(text = tmp, skip = 1)[, -1] colnames(test_df) <- c("fd", "analytic", "diff") expect_equal( as.numeric(test_df$fd), as.numeric(test_df$diff), tolerance = 1e-3 ) expect_equal( as.numeric(test_df$diff), rep(0, nrow(test_df)), tolerance = 1e-3 ) }) ################################################################################ ## CHECK AGAINST MCMC ########################################################## ################################################################################ testthat::skip_on_ci() testthat::skip_on_cran() testthat::skip_if_not(interactive()) library(blavaan) future::plan("multisession", workers = future::availableCores() - 2) fit_blav <- bcfa(mod, dat, bcontrol = list(cores = 3)) fit_inl1 <- acfa(mod, dat, marginal_method = "skewnorm", debug = TRUE) fit_inl2 <- acfa(mod, dat, marginal_method = "asymgaus", debug = TRUE) fit_inl3 <- acfa(mod, dat, marginal_method = "sampling", debug = TRUE) res <- compare_mcmc( fit_blav, "skewnorm" = fit_inl1, "asymgaus" = fit_inl2, "sampling" = fit_inl3 ) print(res$p_compare) print(res$p_errors) print(res$metrics_df, n = 1000)