testthat::skip() library(blavaan) library(lavaan) truval <- c(0.8, 0.7, 0.6, 0.5, 0.4, -1.43, -0.55, -0.13, -0.72, -1.13) dat <- lavaan::simulateData( "eta =~ 0.8*y1 + 0.7*5y2 + 0.6*y3 + 0.5*y4 + 0.4*y5 y1 | -1.43*t1 y2 | -0.55*t1 y3 | -0.13*t1 y4 | -0.72*t1 y5 | -1.13*t1", ordered = TRUE, sample.nobs = 1000 ) mod <- "eta =~ y1 + y2 + y3 + y4 + y5" fit <- acfa( mod, dat, estimator = "PML", ordered = TRUE, std.lv = TRUE, parameterization = "theta" ## << important # add_priors = !TRUE # numerical_grad = TRUE, # vb_correction = FALSE, # marginal_method = "marggaus" ) plot(fit, truth = truval) library(blavaan) # fit_lav <- cfa(mod, dat, ordered = TRUE, std.lv = TRUE) fit_blav <- bcfa( mod, dat, ordered = TRUE, std.lv = TRUE, burnin = 500, sample = 1000, n.chains = 1 ) res <- compare_mcmc(fit_blav, inlavaan = fit, truth = truval) print(res$p_compare) # delta vs theta parameterisation