test_that("empirical_pval() returns correct values", { tol <- 0.1 expect_equal( empirical_pval(seq(1, 100), 95, alternative = "greater"), (5 + 1) / (100 + 1) ) expect_lt(empirical_pval(rnorm(1e3), 2, alternative = "two.sided"), .05 + tol) expect_lt(empirical_pval(rnorm(1e3), -2, alternative = "less"), .025 + tol) }) test_that("empirical_pval() identifies incorrect inputs", { matrix_input <- matrix(rnorm(1e3), ncol = 10) multiple_observations <- c(2, 3) expect_error(empirical_pval(matrix_input, 10)) expect_error(empirical_pval(seq(1, 100), multiple_observations)) expect_error(empirical_pval(95, seq(1, 100))) }) yrep <- matrix(rnorm(1e3), ncol = 10) y <- rep(2, 10) test_that("post_pred_pval() returns a list containing a numeric value and a ggplot", { x <- post_pred_pval(yrep, y, plot = TRUE) expect_is(x, "list") expect_is(x[[1]], "numeric") expect_is(x[[2]], "ggplot") }) test_that("post_pred_pval() identifies potentially incorrect inputs", { expect_warning(post_pred_pval(yrep, c(y, 2))) }) test_that("post_pred_pval() identifies incorrect inputs", { expect_error(post_pred_pval(yrep, y, test_statistic = "mean")) expect_error(post_pred_pval(yrep, y, plot = "no")) })