printInc <- FALSE test_that("GaussSuppressionFromData works", { expect_equal(which(GaussSuppressionFromData(SSBtoolsData("z1"), 1:2, 3, printInc = printInc)$suppressed), c(12, 13, 22, 23, 42, 43)) }) # Sample with seed inside test_that do not work z3 <- SSBtoolsData("z3") upper <- z3$region %in% LETTERS z3$region[upper] <- paste0(z3$region[upper], 2) z3$region[!upper] <- paste0(toupper(z3$region[!upper]), 1) mm <- SSBtools::ModelMatrix(z3[, 1:6], crossTable = TRUE, sparse = FALSE) x <- mm$modelMatrix k <- 1:20000 set.seed(123) sample_k <- sample(k) x[k] <- x[sample_k] test_that("Advanced with integer overflow", { #skip("Strange behaviour. Test works, but not when run inside Check package") skip_on_cran() # The above problem was caused by different character sorting in different systems a <- GaussSuppressionFromData(z3, c(1:6), 7, x = mm$modelMatrix , crossTable = mm$crossTable, maxN = 5, singletonMethod = "anySumOld", printInc = printInc) expect_identical(sum(which(a$suppressed)), 599685L) # This test involves integer overflow in AnyProportionalGaussInt a <- GaussSuppressionFromData(z3, c(1:6), 7, x = x, crossTable = mm$crossTable, singletonMethod = "anySumOld", printInc = printInc) expect_identical(sum(which(a$suppressed)), 525957L) # This test involves integer overflow in AnyProportionalGaussInt a <- GaussSuppressionFromData(z3, c(1:6), 7, x = x, crossTable = mm$crossTable, protectZeros = FALSE, secondaryZeros = TRUE, singletonMethod = "anySumNOTprimaryOld", printInc = printInc) expect_identical(sum(which(a$suppressed)), 411693L) # This test involves all ways of updating A$r[[i]], A$x[[i]], B$r[[i]], B$x[[i]] (Including integer overflow) a <- GaussSuppressionFromData(z3, c(1:6), 7, x = x, crossTable = mm$crossTable, protectZeros = FALSE, secondaryZeros = TRUE, testMaxInt = 10, singletonMethod = "anySumNOTprimaryOld", printInc = printInc) expect_identical(sum(which(a$suppressed)), 411693L) a <- GaussSuppressionFromData(z3, c(1:6), 7, x = x, crossTable = mm$crossTable, protectZeros = FALSE, secondaryZeros = TRUE, allNumeric = TRUE, singletonMethod = "anySumNOTprimaryOld", printInc = printInc) expect_identical(sum(which(a$suppressed)), 411693L) # This test involves TRUE return in AnyProportionalGaussInt after ReduceGreatestDivisor (identical length 3 vectors) x[, 201:300] <- round(0.6 * x[, 201:300] + 0.6 * x[, 301:400]) a <- GaussSuppressionFromData(z3, c(1:6), 7, x = x, crossTable = mm$crossTable, singletonMethod = "anySumOld", printInc = printInc) expect_identical(sum(which(a$suppressed)), 576555L) }) test_that("structuralEmpty and removeEmpty", { expect_warning(a1 <- GaussSuppressionFromData(z3[100:300, ], 1:6, 7, printInc = printInc)) a2 <- GaussSuppressionFromData(z3[100:300, ], 1:6, 7, printInc = printInc, structuralEmpty = TRUE) a3 <- GaussSuppressionFromData(z3[100:300, ], 1:6, 7, printInc = printInc, removeEmpty = TRUE) k <- a1$suppressed != a2$suppressed expect_equal(a1[!k, ], a3, ignore_attr = TRUE) expect_equal(a2[!k, ], a3, ignore_attr = TRUE) expect_equal(unique(a1[k, "ant"]), 0) }) test_that("extend0 and various hierarchy input", { z2 <- SSBtoolsData("z2") dimLists <- SSBtools::FindDimLists(z2[, -5]) hi <- list(c("region", "fylke", "kostragr"), hovedint = dimLists$hovedint) a1 <- GaussSuppressionFromData(z2, 1:4, 5, printInc = printInc) a2 <- GaussSuppressionFromData(z2, freqVar = "ant", hierarchies = dimLists, printInc = printInc) a3 <- GaussSuppressionFromData(z2, freqVar = "ant", hierarchies = hi, printInc = printInc) expect_identical(a1, a2) expect_identical(a3, a2) z2_ <- z2[z2$ant != 0, ] a1 <- GaussSuppressionFromData(z2_, 1:4, 5, extend0 = TRUE, output = "publish_inner", printInc = printInc) expect_identical(a1$publish, a2) a2 <- GaussSuppressionFromData(z2_, freqVar = "ant", hierarchies = dimLists, extend0 = TRUE, output = "publish_inner", printInc = printInc) a3 <- GaussSuppressionFromData(z2_, freqVar = "ant", hierarchies = hi, extend0 = TRUE, output = "publish_inner", printInc = printInc) if (FALSE) { # Include code that shows differences tail(a1$inner) tail(a2$inner) tail(a3$inner) } expect_identical(a1$publish, a2$publish) expect_identical(a3$publish, a2$publish) expect_equal(a1$inner[names(a2$inner)], a2$inner, ignore_attr = TRUE) expect_equal(a3$inner[names(a1$inner)], a1$inner, ignore_attr = TRUE) a1_ <- GaussSuppressionFromData(z2_, 1:4, 5, extend0 = "all", output = "publish_inner", printInc = printInc) a2_ <- GaussSuppressionFromData(z2_, freqVar = "ant", hierarchies = dimLists, extend0 = "all", output = "publish_inner", printInc = printInc) a3_ <- GaussSuppressionFromData(z2_, freqVar = "ant", hierarchies = hi, extend0 = "all", output = "publish_inner", printInc = printInc) expect_identical(a1, a1_) expect_identical(a2, a2_) expect_identical(a3, a3_) z2__ <- z2_[z2_$hovedint != "trygd", ] a2 <- GaussSuppressionFromData(z2__, freqVar = "ant", hierarchies = dimLists, extend0 = "all", output = "publish_inner", printInc = printInc) a3 <- GaussSuppressionFromData(z2__, freqVar = "ant", hierarchies = hi, extend0 = "all", output = "publish_inner", printInc = printInc) expect_identical(a3$publish, a2$publish) expect_equal(a3$inner[names(a2$inner)], a2$inner, ignore_attr = TRUE) expect_identical(lapply(c(a2, a3), dim), lapply(c(a2_, a3_), dim)) z2___ <- z2__[z2__$fylke != 10, ] a2_ <- GaussSuppressionFromData(z2___, freqVar = "ant", hierarchies = dimLists, extend0 = "all", output = "publish_inner", printInc = printInc) a3_ <- GaussSuppressionFromData(z2___, freqVar = "ant", hierarchies = hi, extend0 = "all", output = "publish_inner", printInc = printInc) expect_identical(lapply(a2, dim), lapply(a2_, dim)) expect_true(nrow(a3_$inner) < nrow(a3$inner)) expect_true(nrow(a3_$publish) < nrow(a3$publish)) }) test_that("DominanceRule and NcontributorsRule + CandidatesNum + singleton + forced/unsafe", { set.seed(123) z <- SSBtools::MakeMicro(SSBtoolsData("z2"), "ant") z$char <- sample(paste0("char", 1:10), nrow(z), replace = TRUE) z$value <- rnorm(nrow(z))^2 a <- GaussSuppressionFromData(z, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", candidates = CandidatesNum, primary = DominanceRule, singletonMethod = "sub2Sum", n = c(1, 2), k = c(65, 85), printInc = printInc) b <- GaussSuppressionFromData(z, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", candidates = CandidatesNum, primary = NcontributorsRule, singletonMethod = "none", removeCodes = paste0("char", 1:2), printInc = printInc) expect_identical(as.numeric(which(a$primary)), c(8, 17, 18, 23, 52, 53, 58, 63, 73, 77, 78, 80, 83, 87, 90, 92, 97, 98)) expect_identical(as.numeric(which(b$primary)), c(8, 18, 23, 53, 63, 78, 83, 87, 90, 97, 98)) z$seq2 <- (1:nrow(z))^2 aseq2 <- GaussSuppressionFromData(z, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = c("seq2", "value"), candidatesVar = "value", dominanceVar = "value", charVar = "char", candidates = CandidatesNum, primary = DominanceRule, singletonMethod = "sub2Sum", n = c(1, 2), k = c(65, 85), printInc = printInc) expect_identical(a[names(a)], aseq2[names(a)]) z$char <- paste0("char", 1:nrow(z)) d1 <- GaussSuppressionFromData(z, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", candidates = CandidatesNum, primary = NcontributorsRule, singletonMethod = "none", removeCodes = paste0("char", 1:20), printInc = printInc, freqVar = "ant", preAggregate = FALSE, maxN = 10, whenEmptyUnsuppressed = "stop") d2 <- GaussSuppressionFromData(z, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", candidates = CandidatesNum, primary = NContributorsRule, singletonMethod = "none", removeCodes = 1:20, printInc = printInc, preAggregate = FALSE, maxN = 10, # Empty freq in CandidatesNum whenEmptyUnsuppressed = "stop") expect_equal(d1[names(d1) != "ant"], d2, ignore_attr = TRUE) if(TRUE){ set.seed(123) z$value <- rnorm(nrow(z))^2 # Need to generate again ... not same as above set.seed(1986) # Seed is not randomly chosen z$char <- sample(paste0("char", c(1, 1, 1, 1, 1, 2, 2, 2, 3, 4)), nrow(z), replace = TRUE) b0 <- GaussSuppressionFromData(z, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", maxN = 2, candidates = CandidatesNum, primary = NcontributorsRule, printInc = printInc, singleton = SingletonUniqueContributor, singletonMethod = "none") b1 <- GaussSuppressionFromData(z, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", maxN = 2, candidates = CandidatesNum, primary = NcontributorsRule, printInc = printInc, singleton = SingletonUniqueContributor, singletonMethod = "sub2Sum") b2 <- GaussSuppressionFromData(z, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", maxN = 2, candidates = CandidatesNum, primary = NcontributorsRule, printInc = printInc, singleton = SingletonUniqueContributor, singletonMethod = "numFTT") suppressWarnings({b3 <- GaussSuppressionFromData(z, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", maxN = 2, candidates = CandidatesNum, primary = c(63, 73, 77), # primary = c(8, 18, 23, 53, 63, 73, 77, 78, 90, 97, 98, 100), forced = c(11, 13, 18, 20, 40), printInc = printInc, singleton = SingletonUniqueContributor, singletonMethod = "numFTT")}) suppressWarnings({b4 <- GaussSuppressionFromData(z, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", maxN = 2, candidates = CandidatesNum, primary = c(8, 18, 23, 53, 63, 73, 77, 78, 90, 97, 98, 100), forced = c(11, 13, 18, 20, 40), printInc = printInc, singleton = SingletonUniqueContributor, singletonMethod = "numFTT")}) suppressWarnings({b5 <- GaussSuppressionFromData(z, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", maxN = 2, candidates = CandidatesNum, primary = c(8, 18, 23, 53, 63, 73, 77, 78, 90, 97, 98, 100), forced = c(11, 13, 18, 20, 40), printInc = printInc, protectZeros = TRUE)}) suppressWarnings({b6 <- GaussSuppressionFromData(z, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", maxN = 2, candidates = CandidatesNum, primary = c(8, 18, 23, 53, 63, 73, 77, 78, 90, 97, 98, 100), forced = 1:30, printInc = printInc, protectZeros = FALSE)}) expect_equal(sum(b0$suppressed), 32) expect_equal(sum(b1$suppressed), 33) expect_equal(sum(b2$suppressed), 35) expect_equal(sum(b3$suppressed), 12) expect_equal(sum(b4$suppressed), 32) expect_equal(sum(b5$suppressed), 27) expect_equal(sum(b6$suppressed), 19) expect_equal(sum(b3$unsafe), 0) expect_equal(sum(b4$unsafe), 1) expect_equal(sum(b5$unsafe), 1) expect_equal(sum(b6$unsafe), 3) skip_on_cran() # Code to see differences: #"sub2Sum" solves G-problem #"numFTT" needed to solve K-problem. if (FALSE) for (myChar in c("G", "K")) { kp <- b0[b0$region == myChar & b0$primary, ] k0 <- b0[b0$region == myChar & b0$suppressed, ] k1 <- b1[b2$region == myChar & b1$suppressed, ] k2 <- b2[b2$region == myChar & b2$suppressed, ] cat("===============", myChar, "=============== \n") for (kk in c("kp", "k0", "k1", "k2")) { cat(" -----", kk, "-----\n") ma <- Match(z[c("region", "hovedint")], get(kk)[c("region", "hovedint")]) print(z[!is.na(ma), ]) } } sn <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) sf <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) sum_suppressed <- integer(0) for (m1 in c("none", "anySumNOTprimary")) for (m2 in c("none", "sub2Sum", "numFTT")) { b <- GaussSuppressionFromData(z, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", maxN = 2, candidates = CandidatesNum, primary = NcontributorsRule, printInc = printInc, singleton = list(freq = as.logical(sf), num = as.integer(sn)), singletonMethod = c(freq = m1, num = m2)) sum_suppressed <- c(sum_suppressed, sum(b$suppressed)) } expect_equal(sum_suppressed, c(32, 33, 35, 35, 38, 40)) set.seed(1138) sum_suppressed <- integer(0) zz = z[sample.int(nrow(z), 100, replace = TRUE), ] for (c2 in c("F", "T")) for (c3 in c("F", "T", "H")) for (c4 in c("F", "T")) { b <- GaussSuppressionFromData(zz, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", maxN = 2, printInc = printInc, candidates = CandidatesNum, primary = NcontributorsRule, singleton = SingletonUniqueContributor, singletonMethod = paste0("numF", c2, c3, c4)) sum_suppressed <- c(sum_suppressed, sum(b$suppressed)) } expect_equal(sum_suppressed, c(49, 55, 51, 55, 53, 55, 49, 57, 52, 57, 55, 57)) # Why extra primary needed for 5:Total when "numFTH" # can be seen by looking at # b[b$region == 5, ] # zz[zz$fylke == 5 & zz$hovedint == "annet", ] # zz[zz$fylke == 5 & zz$hovedint == "arbeid", ] # zz[zz$fylke == 5 & zz$hovedint == "soshjelp", ] sum_suppressed <- integer(0) for (singletonMethod in c("numFFF", "numtFF","numTFF", "numtTT", "numtTH", "numtTFT", "numtTHT")) { b <- GaussSuppressionFromData(zz, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", maxN = 2, printInc = printInc, candidates = CandidatesNum, primary = NcontributorsRule, singleton = SingletonUniqueContributor, singletonMethod = singletonMethod, inputInOutput = c(FALSE, TRUE)) # singleton not in publish and therefore not primary suppressed sum_suppressed <- c(sum_suppressed, sum(b$suppressed)) } expect_equal(sum_suppressed, c(17, 18, 18, 19, 19, 23, 23)) # To make non-suppressed singletons SUC <- function(..., removeCodes, primary) SingletonUniqueContributor(..., removeCodes = character(0), primary = integer(0)) sum_suppressed <- integer(0) for (singletonMethod in c("numFFF", "numtFF","numTFF")) { b <- GaussSuppressionFromData(zz, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", maxN = 2, printInc = printInc, candidates = CandidatesNum, primary = NcontributorsRule, removeCodes = "char1", singleton = SUC, singletonMethod = singletonMethod, whenEmptyUnsuppressed = NULL) sum_suppressed <- c(sum_suppressed, c(59, 59, 67)) } zz$char[1:15] <- "char5" expect_warning({b <- GaussSuppressionFromData(zz, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = "char", maxN = 2, printInc = printInc, candidates = CandidatesNum, primary = NcontributorsRule, singleton = SingletonUniqueContributor, singletonMethod = "numFTFW")}) expect_equal(sum(b$suppressed), 51) # Here "if (s_unique == primarySingletonNum[i])" in SSBtools::GaussSuppression matters. set.seed(193) zz$A <- sample(paste0("A", c(1, 1, 1, 1, 1, 2, 2, 2, 3, 4)), nrow(zz), replace = TRUE) zz$B <- sample(paste0("B", c(1, 1, 1, 1, 1, 2, 2, 2, 3, 4)), nrow(zz), replace = TRUE) rcd <- data.frame(char = "char2", A = c("A1", "A2"), B = "B1") removeCodes <- list(NULL, rcd, as.list(rcd)) k <- integer(0) for (specialMultiple in c(FALSE, TRUE)) for (i in 1:3) { b <- GaussSuppressionFromData(zz, dimVar = c("region", "fylke", "kostragr", "hovedint"), numVar = "value", charVar = c("char","A","B"), maxN = 2, printInc = printInc, candidates = CandidatesNum, primary = NcontributorsRule, singleton = SingletonUniqueContributor, singletonMethod = "numTTTTT", output = "inputGaussSuppression", specialMultiple = specialMultiple, removeCodes = removeCodes[[i]]) k <- c(k, 0L, as.vector(table(b$singleton)[as.character(unique(b$singleton))])) } expect_equal(sort(k), sort(c(0, 1, 1, 1, 1, 1, 2, 19, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 20, 1, 1, 1, 0, 1, 29, 0, 2, 6, 3, 9, 9, 1, 0, 2, 5, 3, 9, 10, 1, 0, 2, 5, 1, 1, 2, 17, 2))) } }) test_that("Interpret primary output correctly", { x <- SSBtoolsData("sprt_emp_withEU")[, c(1, 2, 5, 3, 4)] p1 <- function(num, ...) round(10 * num[, 1])%%10 == 3 p2 <- function(num, ...) round(10 * num)%%10 == 3 p3 <- function(num, ...) as.data.frame(round(10 * num)%%10 == 3) p4 <- function(num, ...) list(primary = as.data.frame(round(10 * num)%%10 == 3), numExtra = data.frame(numExtra = round(10 * num[, 1])%%10)) p12 <- function(...) { p <- p2(...) p[] <- as.integer(p) p } G <- function(primary, formula = ~eu * year + age:geo) { which(GaussSuppressionFromData(data = x, formula = formula, numVar = "ths_per", primary = primary, singleton = NULL, output = "inputGaussSuppression", printInc = printInc)$primary) } # Case when x is square gp1 <- G(p1) expect_identical(G(p2), gp1) expect_identical(G(p3), gp1) expect_identical(G(p4), gp1) expect_identical(length(G(p12)), 0L) # since interpret as xExtraPrimary # Case when x is not square gp1_ <- G(p1, formula = ~age * geo) expect_identical(G(p2, formula = ~age * geo), gp1_) expect_identical(G(p3, formula = ~age * geo), gp1_) expect_identical(G(p4, formula = ~age * geo), gp1_) expect_error(G(p12, formula = ~age * geo)) # Error 0 index found in primary output (change to logical?) # Single column xExtraPrimary, Matrix and matrix x$freq <- round(sqrt(x$ths_per) + as.integer(x$year) - 2014 + 0.2 * (-7:10)) z <- x[x$year == "2014", -(4:5)] K <- function(primary) { GaussSuppressionFromData(data = z, formula = ~geo + age, freqVar = "freq", coalition=7, primary = primary, mc_hierarchies = NULL, upper_bound = Inf, protectZeros = FALSE, secondaryZeros = TRUE, output ="outputGaussSuppression_x", printInc = printInc)$xExtraPrimary } e1 <- K(KDisclosurePrimary) e2 <- K(function (...) as.matrix(KDisclosurePrimary(...))) expect_equal(max(abs(e2 - e1)), 0) expect_warning({e3 <- K(function (...) round(1 + 0.1*as.matrix(KDisclosurePrimary(...))))}) # Warning message: Primary output interpreted as xExtraPrimary (rare case of doubt) expect_true(all(dim(e3) == c(6, 1))) }) test_that("More NumSingleton", { sum_suppressed <- integer(0) for (seed in c(116162, 643426)) { set.seed(seed) z <- SSBtoolsData("magnitude1") set.seed(seed) z$company <- z$company[sample.int(20)] z$value <- z$value[sample.int(20)] dataset <- SSBtools::SortRows(aggregate(z["value"], z[1:5], sum)) for (c3 in c("F", "T", "H")) for (c4 in c("F", "t", "T")) for (c5 in c("F", "t", "T")) { if (!(c4 == "F" & c5 != "F")) { singletonMethod <- paste0("numTt", c3, c4, c5) output <- SuppressDominantCells(data = dataset, numVar = "value", dimVar = c("sector4", "geo"), contributorVar = "company", n = 1, k = 80, singletonMethod = singletonMethod, printInc = FALSE) sum_suppressed <- c(sum_suppressed, sum(output$suppressed)) } } } expect_equal(sum_suppressed, c(8, 11, 13, 13, 11, 13, 13, 10, 11, 13, 13, 11, 13, 13, 10, 11, 13, 13, 11, 13, 13, 7, 9, 10, 12, 10, 11, 12, 8, 10, 10, 12, 11, 11, 12, 8, 10, 10, 12, 11, 11, 12)) }) test_that("data.table and NA", { if (!requireNamespace("data.table", quietly = TRUE)) { skip() } z3 <- SSBtoolsData("z3") set.seed(123) z <- z3[sample.int(nrow(z3), 100), ] z <- z3[sample.int(nrow(z), 300, replace = TRUE), ] z$char <- sample(paste0("char", 1:10), nrow(z), replace = TRUE) z$value <- rnorm(nrow(z))^2 z$pop <- c("1", "2") z[sample.int(nrow(z), 5), 1:3] <- NA z[sample.int(nrow(z), 5), 4] <- NA z[sample.int(nrow(z), 5), "pop"] <- NA f <- ~pop:(region + (fylke + kostragr) * hovedint) - 1 a <- vector("list", 8) i <- 0 for (NAomit in c(FALSE, TRUE)) for (aggregateNA in c(FALSE, TRUE)) for (aggregatePackage in c("base", "data.table")) { i <- i + 1 a[[i]] <- SuppressDominantCells(data = z, numVar = "value", formula = f, contributorVar = "char", k = c(80, 90), NAomit = NAomit, aggregateNA = aggregateNA, aggregatePackage = aggregatePackage, printInc = printInc) names(a)[i] <- paste(substr(as.character(NAomit), 1, 1), substr(as.character(aggregateNA), 1, 1), aggregatePackage, sep = "_") } expect_equal(sum(a[["F_F_base"]]$freq), 1716) expect_equal(sum(a[["F_T_base"]]$freq), 1800) expect_equal(sum(a[["T_T_base"]]$freq), 1733) expect_equal(a[["T_F_base"]], a[["F_F_base"]]) expect_equal(a[["F_F_base"]], a[["F_F_data.table"]]) expect_equal(a[["F_T_base"]], a[["F_T_data.table"]]) expect_equal(a[["T_F_base"]], a[["T_F_data.table"]]) expect_equal(a[["T_T_base"]], a[["T_T_data.table"]]) })