data(flea) test_that("example", { flea2 <- flea flea2$species2 <- as.character(flea2$species) expect_warning( p <- ggscatmat(flea2, c(1:3)), "Factor variables are omitted in plot" ) expect_warning( p <- ggscatmat(flea2, c(2:3, 8)), "Factor variables are omitted in plot" ) expect_true(is.null(get_labs(p)$colour)) ggally_expect_doppelganger("flea", p) p <- ggscatmat(flea, columns = 2:4, color = "species") expect_true(!is.null(get_labs(p)$colour)) ggally_expect_doppelganger("flea-color", p) }) test_that("corMethod", { p <- ggscatmat(flea, columns = 2:3, corMethod = "pearson") ggally_expect_doppelganger("flea-pearson", p) p <- ggscatmat(flea, columns = 2:3, corMethod = "rsquare") ggally_expect_doppelganger("flea-rsquare", p) }) test_that("stops", { expect_error( ggscatmat(flea, columns = c(1, 2)), "Not enough numeric variables to" ) expect_error( ggscatmat(flea, columns = c(1, 1, 1)), "All of your variables are factors" ) expect_error( scatmat(flea, columns = c(1, 1, 1)), "All of your variables are factors" ) })