test_that("simple test with iris data", { p <- ggfacet(iris, columnsX = 1:2, columnsY = 3:4) expect_s3_class(p, "ggplot") expect_equal(dim(p$data), c(4L * nrow(iris), ncol(iris) + 4L)) expect_equal( dim(ggfacet(mtcars, columnsX = 1:2, columnsY = 3:5)$data), c(6L * nrow(mtcars), ncol(mtcars) + 4L) ) }) test_that("warnings", { expect_warning( ggfacet(iris, columnsX = 1:5, columnsY = 1), "1 factor variables are being removed from X columns" ) expect_warning( ggfacet(iris, columnsX = 1, columnsY = 1:5), "1 factor variables are being removed from Y columns" ) }) test_that("generally works", { skip_if_not_installed("chemometrics") data(NIR, package = "chemometrics") NIR_sub <- data.frame(NIR$yGlcEtOH, NIR$xNIR[, 1:3]) # factor variables ggally_expect_doppelganger( "factor", ggfacet( NIR_sub, columnsY = 1:2, columnsX = 3:5, fn = ggally_smooth_loess ) ) ggally_expect_doppelganger( "pigs", ggts( pigs, "time", c("gilts", "profit", "s_per_herdsz", "production", "herdsz") ) ) })