context("ggbivariate") test_that("example", { data(tips) p <- ggbivariate(tips, "smoker", c("day", "time", "sex", "tip")) vdiffr::expect_doppelganger("tips", p) # Personalize plot title and legend title p <- ggbivariate( tips, "smoker", c("day", "time", "sex", "tip"), title = "Custom title" ) + labs(fill = "Smoker ?") vdiffr::expect_doppelganger("tips-title", p) # Customize fill colour scale p <- ggbivariate(tips, "smoker", c("day", "time", "sex", "tip")) + scale_fill_brewer(type = "qual") vdiffr::expect_doppelganger("tips-fill-qual", p) # Customize labels p <- ggbivariate( tips, "smoker", c("day", "time", "sex", "tip"), rowbar_args = list( colour = "white", size = 4, fontface = "bold", label_format = scales::label_percent(accurary = 1) ) ) vdiffr::expect_doppelganger("tips-rowbar", p) # Choose the sub-plot from which get legend p <- ggbivariate(tips, "smoker") vdiffr::expect_doppelganger("tips-legend-default", p) ggbivariate(tips, "smoker", legend = 3) vdiffr::expect_doppelganger("tips-legend-3", p) # Use mapping to indicate weights d <- as.data.frame(Titanic) p <- ggbivariate(d, "Survived", mapping = aes(weight = Freq)) vdiffr::expect_doppelganger("titanic-weight-freq", p) # outcome can be numerical p <- ggbivariate(tips, outcome = "tip", title = "tip") vdiffr::expect_doppelganger("tips-numeric", p) })