library(GGIR) context("read.myacc.csv") test_that("read.myacc.csv can handle files without header, no decimal places in timestamps, temperature", { skip_on_cran() old_options = options() # create test files N = 30 sf = 30 options(digits.secs = 4) # NOTE THIS UNIT TEST STILL USES POSIXlt A LOT # BECAUSE OLDER R RELEASE CANNOT HANDLE POSIXct for this purpose t0 = as.POSIXlt(x = "2022-11-02 14:01:16.00", tz = "Europe/Amsterdam") timeseq = t0 + ((0:(N - 1))/sf) time = as.POSIXlt(timeseq, origin = "1970-1-1", tz = "Europe/London") testfile = matrix("", 4, 1) set.seed(100) accx = rnorm(N) set.seed(200) accy = rnorm(N) set.seed(300) accz = rnorm(N) set.seed(400) temp = rnorm(N) wear = c(rep(TRUE,N/3),rep(FALSE,N/6),rep(TRUE,N/3),rep(TRUE,N/6)) # No header, but otherwise normal S1 = data.frame(x = accx, time = time, y = accy, z = accz, temp = temp + 20, stringsAsFactors = TRUE) testfile[1] = "testcsv1.csv" write.csv(S1, file = testfile[1], row.names = FALSE) # With decimal places in seconds removed testfile[2] = "testcsv2.csv" S1$time = round(S1$time) write.csv(S1, file = testfile[2], row.names = FALSE) # Without temperature S2 = data.frame(x = accx, time = time, y = accy, z = accz, stringsAsFactors = TRUE) testfile[3] = "testcsv3.csv" write.csv(S2, file = testfile[3], row.names = FALSE) # Without temperature, without time, with a wear channel S3 = data.frame(x = accx, y = accy, z = accz, wear = wear, stringsAsFactors = TRUE) testfile[4] = "testcsv4.csv" write.csv(S3, file = testfile[4], row.names = FALSE) # attempt to load D1 = read.myacc.csv(rmc.file = testfile[1], rmc.nrow = 20, rmc.dec = ".", rmc.firstrow.acc = 1, rmc.firstrow.header = c(), rmc.col.acc = c(1,3,4), rmc.col.temp = 5, rmc.col.time = 2, rmc.unit.acc = "g", rmc.unit.temp = "C", rmc.format.time = "%Y-%m-%d %H:%M:%OS", rmc.origin = "1970-01-01", desiredtz = "Europe/London", rmc.sf = sf, rmc.headername.sf = "sample_frequency", rmc.headername.sn = "serial_number", rmc.headername.recordingid = "ID") #------------------------ # Warnings and errors related to desiredtz and configtz # warning if desiredtz not provided but rmc.desiredtz provided: expect_warning(read.myacc.csv(rmc.file = testfile[1], rmc.nrow = 20, rmc.dec = ".", rmc.firstrow.acc = 1, rmc.firstrow.header = c(), rmc.col.acc = c(1,3,4), rmc.col.temp = 5, rmc.col.time = 2, rmc.unit.acc = "g", rmc.unit.temp = "C", rmc.format.time = "%Y-%m-%d %H:%M:%OS", rmc.origin = "1970-01-01", rmc.desiredtz = "Europe/London", rmc.sf = sf, rmc.headername.sf = "sample_frequency", rmc.headername.sn = "serial_number", rmc.headername.recordingid = "ID")) # now also with configtz expect_warning(read.myacc.csv(rmc.file = testfile[1], rmc.nrow = 20, rmc.dec = ".", rmc.firstrow.acc = 1, rmc.firstrow.header = c(), rmc.col.acc = c(1,3,4), rmc.col.temp = 5, rmc.col.time = 2, rmc.unit.acc = "g", rmc.unit.temp = "C", rmc.format.time = "%Y-%m-%d %H:%M:%OS", rmc.origin = "1970-01-01", desiredtz = "Europe/London", rmc.configtz = "Europe/Madrid", rmc.sf = sf, rmc.headername.sf = "sample_frequency", rmc.headername.sn = "serial_number", rmc.headername.recordingid = "ID")) # error if none of rmc.desiredtz and desiredtz are provided: expect_error(read.myacc.csv(rmc.file = testfile[1], rmc.nrow = 20, rmc.dec = ".", rmc.firstrow.acc = 1, rmc.firstrow.header = c(), rmc.col.acc = c(1,3,4), rmc.col.temp = 5, rmc.col.time = 2, rmc.unit.acc = "g", rmc.unit.temp = "C", rmc.format.time = "%Y-%m-%d %H:%M:%OS", rmc.origin = "1970-01-01", rmc.sf = sf, rmc.headername.sf = "sample_frequency", rmc.headername.sn = "serial_number", rmc.headername.recordingid = "ID")) # error if both rmc.desiredtz and desiredtz are provided: expect_error(read.myacc.csv(rmc.file = testfile[1], rmc.nrow = 20, rmc.dec = ".", rmc.firstrow.acc = 1, rmc.firstrow.header = c(), rmc.col.acc = c(1,3,4), rmc.col.temp = 5, rmc.col.time = 2, rmc.unit.acc = "g", rmc.unit.temp = "C", rmc.format.time = "%Y-%m-%d %H:%M:%OS", rmc.origin = "1970-01-01", desiredtz = "Europe/London", rmc.desiredtz = "Europe/Madrid", rmc.sf = sf, rmc.headername.sf = "sample_frequency", rmc.headername.sn = "serial_number", rmc.headername.recordingid = "ID")) # Evaluate with decimal places in seconds expect_equal(nrow(D1$data), 20) expect_equal(ncol(D1$data), 5) expect_equal(strftime(as.POSIXct(D1$data$time[1:5], tz = "Europe/London", origin = "1970-01-01"), format = '%Y-%m-%d %H:%M:%OS2', tz = "Europe/London"), c("2022-11-02 13:01:16.00", "2022-11-02 13:01:16.03", "2022-11-02 13:01:16.06", "2022-11-02 13:01:16.09", "2022-11-02 13:01:16.13")) expect_that(D1$header,equals("no header")) # Evaluate without decimal places decimal places in seconds and # different config timezone D2 = read.myacc.csv(rmc.file = testfile[2], rmc.nrow = 20, rmc.dec = ".", rmc.firstrow.acc = 1, rmc.firstrow.header = c(), rmc.col.acc = c(1,3,4), rmc.col.temp = 5, rmc.col.time = 2, rmc.unit.acc = "g", rmc.unit.temp = "C", rmc.format.time = "%Y-%m-%d %H:%M:%OS", rmc.origin = "1970-01-01", desiredtz = "Europe/London", rmc.sf = sf, configtz = "America/Chicago", rmc.headername.sf = "sample_frequency", rmc.headername.sn = "serial_number", rmc.headername.recordingid = "ID") expect_equal(nrow(D2$data), 20) expect_equal(ncol(D2$data), 5) expect_equal(strftime(as.POSIXct(D2$data$time[1:5], tz = "Europe/London", origin = "1970-01-01"), format = '%Y-%m-%d %H:%M:%OS2', tz = "Europe/London"), c("2022-11-02 18:01:16.50", "2022-11-02 18:01:16.53", "2022-11-02 18:01:16.56", "2022-11-02 18:01:16.59", "2022-11-02 18:01:16.63")) expect_that(D2$header,equals("no header")) D3 = read.myacc.csv(rmc.file = testfile[3], rmc.nrow = 20, rmc.dec = ".", rmc.firstrow.acc = 1, rmc.firstrow.header = c(), rmc.col.acc = c(1,3,4), rmc.col.temp = c(), rmc.col.time = 2, rmc.unit.acc = "g", rmc.unit.temp = "C", rmc.format.time = "%Y-%m-%d %H:%M:%OS", rmc.origin = "1970-01-01", desiredtz = "Europe/London", rmc.sf = sf, rmc.headername.sf = "sample_frequency", rmc.headername.sn = "serial_number", rmc.headername.recordingid = "ID") expect_that(nrow(D3$data),equals(20)) expect_that(ncol(D3$data),equals(4)) expect_that(D3$header,equals("no header")) D4 = read.myacc.csv(rmc.file = testfile[4], rmc.nrow = 20, rmc.dec = ".", rmc.firstrow.acc = 1, rmc.firstrow.header = c(), rmc.col.acc = 1:3, rmc.col.temp = c(), rmc.col.time = c(), rmc.unit.acc = "g", rmc.unit.temp = "C", rmc.format.time = "%Y-%m-%d %H:%M:%OS", rmc.origin = "1970-01-01", desiredtz = "Europe/London", rmc.sf = sf, rmc.headername.sf = "sample_frequency", rmc.headername.sn = "serial_number", rmc.headername.recordingid = "ID", rmc.col.wear = 4) expect_that(nrow(D4$data), equals(20)) expect_true(D4$data[1, 4]) expect_that(ncol(D4$data), equals(4)) expect_that(D4$header, equals("no header")) for (i in 1:length(testfile)) { expect_true(file.exists(testfile[i])) if (file.exists(testfile[i])) file.remove(testfile[i]) } options(old_options) }) test_that("read.myacc.csv can handle header and bit-value acceleration", { skip_on_cran() old_options = options() # create test files N = 30 sf = 30 options(digits.secs = 4) t0 = as.POSIXlt(x = "2022-11-02 14:01:16.00", tz = "Europe/Amsterdam") timeseq = t0 + ((0:(N - 1))/sf) time = as.POSIXlt(timeseq, origin = "1970-1-1", tz = "Europe/London") testfile = matrix("", 3, 1) set.seed(100) accx = rnorm(N) set.seed(200) accy = rnorm(N) set.seed(300) accz = rnorm(N) set.seed(400) temp = rnorm(N) wear = c(rep(TRUE, N / 3), rep(FALSE, N / 6), rep(TRUE, N / 3), rep(TRUE, N / 6)) # 1: With 2-column header, with temperature, with time S1 = as.matrix(data.frame(x = accx, time = time, y = accy, z = accz, temp = temp + 20, stringsAsFactors = TRUE)) hd_NR = 10 hd = matrix("", hd_NR + 1, ncol(S1)) hd[1, 1:2] = c("ID","12345") hd[2, 1:2] = c("sample_rate","30") hd[3, 1:2] = c("serial_number","30") hd[4, 1:2] = c("bit","8") hd[5, 1:2] = c("dynamic_range","6") S1 = rbind(hd, S1) S1[hd_NR + 1,] = colnames(S1) colnames(S1) = NULL testfile[1] = "testcsv1.csv" write.table(S1, file = testfile[1], col.names = FALSE, row.names = FALSE) # 2: With 2-column header, with temperature, with time, bit-value acceleration unit bits = 8 set.seed(100) xb = sample(x = 1:(2^bits),size = N,replace = TRUE) set.seed(200) yb = sample(x = 1:(2^bits),size = N,replace = TRUE) set.seed(300) zb = sample(x = 1:(2^bits),size = N,replace = TRUE) set.seed(400) temp3 = rnorm(N) S3 = S2 = as.matrix(data.frame(x = xb, time = time, y = yb, z = zb, temp = temp3 + 20, stringsAsFactors = TRUE)) S2 = rbind(hd, S2) S2[hd_NR + 1, ] = colnames(S2) colnames(S2) = NULL testfile[2] = "testcsv2.csv" write.table(S2, file = testfile[2], col.names = FALSE, row.names = FALSE) # 2. A header in 1 column: hd2 = matrix("", hd_NR + 1, ncol(S3)) hd2[1, 1:2] = c("ID: 12345", "") hd2[2, 1:2] = c("sample_rate: 30", "") hd2[3, 1:2] = c("serial_number: 30", "") hd2[4, 1:2] = c("bit: 8", "") hd2[5, 1:2] = c("dynamic_range: 6", "") S3 = rbind(hd2, S3) S3[hd_NR + 1,] = colnames(S3) colnames(S3) = NULL testfile[3] = "testcsv3.csv" write.table(S3, file = testfile[3], col.names = FALSE, row.names = FALSE) #------------------------ # Test 1 - 2 column header D1 = read.myacc.csv(rmc.file = testfile[1], rmc.nrow = 20, rmc.dec = ".", rmc.firstrow.acc = 11, rmc.firstrow.header = 1, rmc.col.acc = c(1, 3, 4), rmc.col.temp = 5, rmc.col.time = 2, rmc.unit.acc = "g", rmc.unit.temp = "C", rmc.format.time = "%Y-%m-%d %H:%M:%OS", rmc.origin = "1970-01-01", desiredtz = "Europe/London", rmc.headername.sf = "sample_frequency", rmc.headername.sn = "serial_number", rmc.headername.recordingid = "ID") expect_that(nrow(D1$data), equals(20)) expect_that(ncol(D1$data), equals(5)) expect_that(nrow(D1$header), equals(5)) expect_that(ncol(D1$header), equals(1)) expect_equal(as.numeric(D1$header["sample_rate",1]), 30) # Test 2 - 2 column header, bit-valued acceleration D2 = read.myacc.csv(rmc.file = testfile[2], rmc.nrow = 20, rmc.dec = ".", rmc.firstrow.acc = 11, rmc.firstrow.header = 1, rmc.col.acc = c(1,3,4), rmc.col.temp = 5, rmc.col.time = 2, rmc.unit.acc = "bit", rmc.unit.temp = "C", rmc.format.time = "%Y-%m-%d %H:%M:%OS", rmc.origin = "1970-01-01", desiredtz = "Europe/London", rmc.sf = sf, rmc.headername.sf = "sample_rate", rmc.headername.sn = "serial_number", rmc.headername.recordingid = "ID", rmc.bitrate = "bit", rmc.dynamic_range = "dynamic_range", rmc.header.structure = c()) expect_that(nrow(D2$data),equals(20)) expect_that(ncol(D2$data),equals(5)) expect_that(nrow(D2$header),equals(5)) expect_that(ncol(D2$header),equals(1)) # Test 3 - 1 column header, bit-valued acceleration D3 = read.myacc.csv(rmc.file = testfile[3], rmc.nrow = 20, rmc.dec = ".", rmc.firstrow.acc = 11, rmc.firstrow.header = 1, rmc.header.length = 5, rmc.col.acc = c(1,3,4), rmc.col.temp = 5, rmc.col.time = 2, rmc.unit.acc = "bit", rmc.unit.temp = "C", rmc.format.time = "%Y-%m-%d %H:%M:%OS", rmc.origin = "1970-01-01", desiredtz = "Europe/London", rmc.sf = sf, rmc.headername.sf = "sample_rate", rmc.headername.sn = "serial_number", rmc.headername.recordingid = "ID", rmc.bitrate = "bit", rmc.dynamic_range = "dynamic_range", rmc.header.structure = ": ", rmc.check4timegaps = TRUE) # expect_equal(mean(D3$data[,2]), 0.761, tolerance = 3) expect_equal(mean(D3$data[,3]), -0.62, tolerance = 2) expect_equal(mean(D3$data[,4]), -0.36, tolerance = 1) expect_equal(mean(D3$data[,5]), 20.1, tolerance = 1) expect_equal(D3$data[2,2], 0.9768219, tolerance = 3) expect_equal(ncol(D3$data), 5) expect_equal(nrow(D3$header),5) expect_equal(ncol(D3$header), 1) expect_equal(as.numeric(D3$header[1,]), 12345) expect_equal(as.numeric(D3$header[2,]), 30) for (i in 1:length(testfile)) { expect_true(file.exists(testfile[i])) if (file.exists(testfile[i])) file.remove(testfile[i]) } options(old_options) }) test_that("read.myacc.csv can handle gaps in time and irregular sample rate", { skip_on_cran() old_options = options() # create test files N = 30 sf = 30 options(digits.secs = 4) t0 = as.POSIXlt(x = "2022-11-02 14:01:16.00", tz = "Europe/Amsterdam") timeseq = t0 + ((0:(N - 1))/sf) time = as.POSIXlt(timeseq, origin = "1970-1-1", tz = "Europe/London") testfile = matrix("", 1, 1) set.seed(100) accx = rnorm(N) set.seed(200) accy = rnorm(N) set.seed(300) accz = rnorm(N) set.seed(400) temp = rnorm(N) wear = c(rep(TRUE, N / 3), rep(FALSE, N / 6), rep(TRUE, N / 3), rep(TRUE, N / 6)) # 1: With 2-column header, with temperature, with gap in time, variation in sample rate time_gap = time time_gap[10:length(time_gap)] = time_gap[10:length(time_gap)] + 5 # add gap of 5 seconds time_gap = time_gap + rnorm(n = length(time_gap), mean = 0, sd = 0.0001) S1 = as.matrix(data.frame(x = accx, time = time_gap, y = accy, z = accz, temp = temp + 20, stringsAsFactors = TRUE)) hd_NR = 10 hd = matrix("", hd_NR + 1, ncol(S1)) hd[1, 1:2] = c("ID","12345") hd[2, 1:2] = c("sample_rate","30") hd[3, 1:2] = c("serial_number","30") S1 = rbind(hd, S1) S1[hd_NR + 1,] = colnames(S1) colnames(S1) = NULL testfile[1] = "testcsv1.csv" write.table(S1, file = testfile[1], col.names = FALSE, row.names = FALSE) #------------------------ # Test 1 - time gaps but otherwise regular sample rate D1 = read.myacc.csv(rmc.file = testfile[1], rmc.nrow = 20, rmc.dec = ".", rmc.firstrow.acc = 11, rmc.firstrow.header = 1, rmc.col.acc = c(1, 3, 4), rmc.col.temp = 5, rmc.col.time = 2, rmc.unit.acc = "g", rmc.unit.temp = "C", rmc.format.time = "%Y-%m-%d %H:%M:%OS", rmc.origin = "1970-01-01", desiredtz = "Europe/London", rmc.sf = sf, rmc.headername.sf = "sample_rate", rmc.headername.sn = "serial_number", rmc.headername.recordingid = "ID", rmc.check4timegaps = TRUE, rmc.doresample = FALSE) expect_that(nrow(D1$data), equals(170)) # because data expands with 5 seconds that are now imputed expect_that(ncol(D1$data), equals(5)) #------------------------ # Test 2 - time gaps and irregular sample rate D2 = read.myacc.csv(rmc.file = testfile[1], rmc.nrow = 20, rmc.dec = ".", rmc.firstrow.acc = 11, rmc.firstrow.header = 1, rmc.col.acc = c(1, 3, 4), rmc.col.temp = 5, rmc.col.time = 2, rmc.unit.acc = "g", rmc.unit.temp = "C", rmc.format.time = "%Y-%m-%d %H:%M:%OS", rmc.origin = "1970-01-01", desiredtz = "Europe/London", rmc.sf = sf, rmc.headername.sf = "sample_rate", rmc.headername.sn = "serial_number", rmc.headername.recordingid = "ID", rmc.check4timegaps = TRUE, rmc.doresample = TRUE) expect_that(nrow(D2$data), equals(170)) # because data expands with 5 seconds that are now imputed expect_that(ncol(D2$data), equals(5)) for (i in 1:length(testfile)) { expect_true(file.exists(testfile[i])) if (file.exists(testfile[i])) file.remove(testfile[i]) } options(old_options) })