context("remove_blanks") library(testthat) data("peak_data") ## subset for faster processing data <- lapply(peak_data[1:5], function(x) x[20:40,]) x <- align_chromatograms(data, rt_col_name = "time") # peaks of C3 & C2 p1 <- length(x[["aligned_list"]][["C3"]][["time"]][x[["aligned_list"]][["C3"]][["time"]] > 0]) p2 <- length(x[["aligned_list"]][["C2"]][["time"]][x[["aligned_list"]][["C2"]][["time"]] > 0]) p3 <- length(peak_data[["C3"]][["time"]][!is.na(peak_data[["C2"]][["time"]])]) # all peaks n <- length(x[["aligned_list"]][["M2"]][["time"]]) N <- length(peak_data[["M2"]][["time"]]) out <- remove_blanks(data = x, blanks = "C3") out2 <- remove_blanks(data = x, blanks = "C2") out3 <- remove_blanks(data = peak_data, blanks = "C2") n2 <- length(out[["M2"]][["time"]]) n3 <- length(out2[["M2"]][["time"]]) n4 <- length(out3[["M2"]][["time"]]) test_that("output is correct", { ## n2 = n-p1 expect_true(n2 == n - p1) expect_true(n3 == n - p2) expect_true(n4 == N - p3) })