test_that("Ml_Cox does not work without covariables.", { n_cov = 0 n_per_cluster = 15 n_cluster = 20 n = n_cluster * n_per_cluster G = rep(1:n_cluster, each = n_per_cluster) Z = matrix(rnorm(n*n_cov,0,1),ncol = n_cov) df = simulate_data(G,Z,prop = 0.6,beta = c(),theta = 0.3,cens = TRUE) expect_error(Ml_Cox(df),"With no covariables, there is nothing to estimate") }) test_that("Ml_Cox works in a typical case.",{ set.seed(123) n_cov = 2 n_per_cluster = 15 n_cluster = 20 n = n_cluster * n_per_cluster G = rep(1:n_cluster, each = n_per_cluster) Z = matrix(rnorm(n*n_cov,0,1),ncol = n_cov) df = simulate_data(G,Z,prop = 0.6,beta = c(1,1.2),theta = 0.3,cens = TRUE) res = Ml_Cox(df) expect_equal(length(res$beta),n_cov) expect_lte(abs(res$beta[1]-1),1) expect_lte(abs(res$beta[2]-1.2),1) })