# This file covers the code in CovariateData.R. View coverage for this file using # library(testthat); library(FeatureExtraction) # covr::file_report(covr::file_coverage("R/CovariateData.R", "tests/testthat/test-CovariateData.R")) test_that("test CovariateData Class on Empty", { skip_if_not(dbms == "sqlite") # create 4 scenarios of Covariate Data # 1) error (non class), 2) covariate data, 3) aggregatedCovariate Data, # 4) temporalCovariate Data errCovData <- list() covData <- FeatureExtraction::createEmptyCovariateData( cohortIds = 9999, aggregated = FALSE, temporal = FALSE ) aggCovData <- FeatureExtraction::createEmptyCovariateData( cohortIds = 9999, aggregated = TRUE, temporal = FALSE ) tempCovData <- FeatureExtraction::createEmptyCovariateData( cohortIds = 9999, aggregated = FALSE, temporal = TRUE ) # check that objects are covariate Data class expect_false(isCovariateData(errCovData)) expect_true(isCovariateData(covData)) expect_true(isCovariateData(aggCovData)) expect_true(isCovariateData(tempCovData)) # check that objects are aggregate covariate data class expect_error(isAggregatedCovariateData(errCovData)) expect_false(isAggregatedCovariateData(covData)) expect_true(isAggregatedCovariateData(aggCovData)) expect_false(isAggregatedCovariateData(tempCovData)) # check that objects are temporal covariate data class expect_error(isTemporalCovariateData(errCovData)) expect_false(isTemporalCovariateData(covData)) expect_false(isTemporalCovariateData(aggCovData)) expect_true(isTemporalCovariateData(tempCovData)) Andromeda::close(covData) Andromeda::close(aggCovData) Andromeda::close(tempCovData) }) test_that("test saveCovariateData error cases", { skip_on_cran() skip_if_not(dbms == "sqlite" && exists("eunomiaConnection")) saveFileTest <- tempfile("covDatSave") settings <- createDefaultCovariateSettings() covariateData <- getDbCovariateData( connectionDetails = eunomiaConnectionDetails, cdmDatabaseSchema = eunomiaCdmDatabaseSchema, cohortDatabaseSchema = eunomiaOhdsiDatabaseSchema, cohortIds = c(1), covariateSettings = settings, aggregated = FALSE ) # create error for test errCovData <- list() expect_error(saveCovariateData()) # empty call error expect_error(saveCovariateData(covariateData)) # no file error expect_error(saveCovariateData(errCovData, file = saveFileTest)) # non covariateData class error expect_message( saveCovariateData(covariateData, file = saveFileTest), "Disconnected Andromeda. This data object can no longer be used" ) Andromeda::close(covariateData) unlink(saveFileTest) }) test_that("test summary call for covariateData class", { skip_if_not(dbms == "sqlite" && exists("eunomiaConnection")) settings <- createDefaultCovariateSettings() covariateData <- getDbCovariateData( connectionDetails = eunomiaConnectionDetails, cdmDatabaseSchema = eunomiaCdmDatabaseSchema, cohortDatabaseSchema = eunomiaOhdsiDatabaseSchema, cohortIds = c(1), covariateSettings = settings, aggregated = FALSE ) sumOut <- summary(covariateData) Andromeda::close(covariateData) expect_equal(sumOut$metaData$cohortIds, 1L) }) test_that("test filtering of covariates based on minCharacterizationMean", { skip_on_cran() skip_if_not(dbms == "sqlite" && exists("eunomiaConnection")) settings <- createDefaultCovariateSettings() covariateData <- getDbCovariateData( connectionDetails = eunomiaConnectionDetails, cdmDatabaseSchema = eunomiaCdmDatabaseSchema, cohortDatabaseSchema = eunomiaOhdsiDatabaseSchema, cohortIds = c(1), covariateSettings = settings, aggregated = TRUE, minCharacterizationMean = 0 ) nCovariates <- covariateData$covariates %>% collect() %>% nrow() minCharMeanValue <- 0.02 covariateDataFiltered <- getDbCovariateData( connectionDetails = eunomiaConnectionDetails, cdmDatabaseSchema = eunomiaCdmDatabaseSchema, cohortDatabaseSchema = eunomiaOhdsiDatabaseSchema, cohortIds = c(1), covariateSettings = settings, aggregated = TRUE, minCharacterizationMean = minCharMeanValue ) nCovariatesFiltered <- covariateDataFiltered$covariates %>% collect() %>% nrow() expect_true(nCovariatesFiltered < nCovariates) expect_true(covariateDataFiltered$covariates %>% pull(averageValue) %>% min() >= minCharMeanValue) }) test_that("test loadCovariateData", { expect_error(loadCovariateData("errorPath")) }) test_that("Test exit/warning conditions", { # Empty Directory test tempDir <- tempdir() expect_error(loadCovariateData(file = tempDir)) on.exit(unlink(tempDir)) # ReadOnly parameter depreciated cvData <- FeatureExtraction::createEmptyCovariateData(cohortIds = 1, aggregated = FALSE, temporal = FALSE) tempFile <- tempfile() tempFileName <- paste0(tempFile, ".zip") saveCovariateData(cvData, tempFileName) expect_warning(loadCovariateData(file = tempFileName, readOnly = TRUE)) on.exit(unlink(tempFileName)) on.exit(rm(cvData)) }) test_that("Test show method", { cvData <- FeatureExtraction::createEmptyCovariateData(cohortIds = c(1, 2), aggregated = FALSE, temporal = FALSE) expect_invisible(show(cvData)) on.exit(rm(cvData)) }) test_that("getDbCovariateData cohortId warning", { skip_on_cran() skip_if_not(dbms == "sqlite" && exists("eunomiaConnection")) settings <- createDefaultCovariateSettings() expect_warning(getDbCovariateData( connectionDetails = eunomiaConnectionDetails, cdmDatabaseSchema = eunomiaCdmDatabaseSchema, cohortDatabaseSchema = eunomiaOhdsiDatabaseSchema, cohortId = c(1), covariateSettings = settings, aggregated = FALSE ), "cohortId argument has been deprecated, please use cohortIds") }) test_that("getDbCovariateData settings list - check metaData", { skip_on_cran() skip_if_not(dbms == "sqlite" && exists("eunomiaConnection")) looCovSet <- FeatureExtraction:::.createLooCovariateSettings(useLengthOfObs = TRUE) covariateSettingsList <- list(looCovSet, looCovSet) covariateData <- getDbCovariateData( connection = eunomiaConnection, cdmDatabaseSchema = eunomiaCdmDatabaseSchema, cohortTable = "cohort", cohortIds = c(-1), covariateSettings = covariateSettingsList ) metaData <- attr(covariateData, "metaData") expect_true("sql" %in% names(metaData)) expect_equal(class(metaData$sql), "list") expect_equal(length(metaData$sql), 1) expect_equal(length(metaData$sql[[1]]), 2) })