print("Entering test_basis.R") m1 <- sphere(radius = 1) m2 <- plane() m3 <- real_line() mu1 <- mu2 <- matrix(c(1,1),1,2) mu3 <- matrix(1,1,1) std <- 1 test_that("basis can be generated", { expect_true({ .GRBF_wrapper(m1,mu1,std); TRUE}) expect_true({ .bisquare_wrapper(m1,mu1,std); TRUE}) expect_true({ .exp_wrapper(m1,mu1,std); TRUE}) expect_true({ .Matern32_wrapper(m1,mu1,std); TRUE}) }) G1 <- .GRBF_wrapper(m1,mu1,std) G2 <- .GRBF_wrapper(m2,mu2,std) G3 <- .GRBF_wrapper(m3,mu3,std) test_that("basis work with all manifolds", { expect_identical(G2(s=matrix(c(0,1),1,2)), as.matrix(dnorm(mean=0,sd=1,x=1)*sqrt(2*pi))) expect_identical(G3(s=matrix(0,1,1)), as.matrix(dnorm(mean=0,sd=1,x=1)*sqrt(2*pi))) expect_is(G1(s=matrix(0,1,2)),"matrix") expect_is(G2(s=matrix(0,1,2)),"matrix") expect_is(G3(s=matrix(0,1,1)),"matrix") }) mu <- matrix(-90 + 180*runif(100),50,2) mu[,1] <- mu[,1]*2 std <- rep(500,50) G_basis <- local_basis(manifold = sphere(),loc = mu,scale=std,type="Gaussian") test_that("we can show basis locations on sphere", { expect_true({show_basis(G_basis); TRUE}) }) test_that("summary/print/show works", { expect_true({summary(G_basis);TRUE}) expect_true({print(G_basis);TRUE}) expect_true({show(G_basis);TRUE}) }) mu <- matrix(rnorm(10),5,2) std <- rep(0.3,5) G_basis <- local_basis(manifold = plane(),loc = mu,scale=std,type="Gaussian") test_that("we can have multiple functions in a Basis object on plane and plot them", { expect_equal(G_basis@n, 5) expect_equal(nrow(G_basis@df), 5) expect_equal(G_basis@fn[[1]](mu)[1,1],1) # Value of basis at mean is 1 expect_equal(unname(diag(eval_basis(G_basis,s = mu))),rep(1,5)) expect_true({show_basis(G_basis); TRUE}) }) mu <- matrix(runif(10),10,1) std <- rep(0.3,10) G_basis <- local_basis(manifold = real_line(),loc = mu,scale=std,type="Gaussian") test_that("we can have multiple functions in a Basis object on real line and plot them", { expect_equal(G_basis@n, 10) expect_equal(nrow(G_basis@df), 10) expect_equal(G_basis@fn[[1]](mu)[1,1],1) # Value of basis at mean is 1 expect_equal(unname(diag(eval_basis(G_basis,s = mu))),rep(1,10)) expect_is(eval_basis(G_basis,s = mu),"Matrix") expect_true({show_basis(G_basis); TRUE}) }) test_that("can average basis over polygons in plane", { ## Get data library(sp) data(meuse) data(meuse.grid) coordinates(meuse) = ~x+y # change into an sp object gridded(meuse.grid) = ~x + y HexPts <- spsample(meuse.grid, type = "hexagonal", cellsize = 400) HexPols <- HexPoints2SpatialPolygons(HexPts) HexPols_df <- SpatialPolygonsDataFrame(HexPols, cbind(over(HexPols,meuse.grid), coordinates(HexPts))) ## Generate basis functions G <- auto_basis(manifold = plane(),data=meuse,nres = 2,prune=10,type = "Gaussian") expect_true({eval_basis(G,coordinates(HexPts)); TRUE}) expect_true({eval_basis(G,HexPols_df); TRUE}) #plot(as.numeric(S1)) #lines(as.numeric(S2),col='red') }) ## Deprecated: # test_that("can get ST basis using time repetition", { # G_spatial <- local_basis(manifold = sphere(), # loc=matrix(runif(20,min=-90,max=90),10,2), # scale=rep(20,10), # type="bisquare") # G_space_time <- sp_to_ST_basis(G_spatial,1:10,manifold=STsphere()) # expect_is(G_space_time,"Basis") # expect_is(manifold(G_space_time),"STsphere") # expect_equal(nbasis(G_space_time),100) # # }) test_that("can get ST basis using tensor product", { G_spatial <- local_basis(manifold = sphere(), loc=matrix(runif(20,min=-90,max=90),10,2), scale=rep(20,10), type="bisquare") G_temporal <- local_basis(manifold=real_line(),loc = matrix(c(2,7,12)),scale = rep(3,3)) G_spacetime <- TensorP(G_spatial,G_temporal) expect_is(G_spacetime,"TensorP_Basis") expect_is(G_spacetime@Basis1,"Basis") expect_is(G_spacetime@Basis2,"Basis") expect_equal(nbasis(G_spacetime),30) expect_true({summary(G_spacetime);TRUE}) expect_true({print(G_spacetime);TRUE}) expect_true({show(G_spacetime);TRUE}) }) test_that("can manipulate basis function data frame", { G <- local_basis() expect_is(G,"Basis") df <- data.frame(G) expect_is(df,"data.frame") expect_identical(df$res,1) df$res <- 2 data.frame(G) <- df expect_identical(G@df$res,2) }) test_that("can remove basis", { G <- local_basis(loc = matrix(c(1,1,2,2),ncol=2), scale = c(1,2)) G2 <- remove_basis(G,1) expect_equal(G@df[2,],G2@df) expect_equal(nbasis(G2),1) })