test_that("SRE 1D works",{ library(dplyr) library(sp) library(Matrix) ### Generate process and data sim_process <- data.frame(x = seq(0.005,0.995,by=0.01)) %>% mutate(y=0,proc = sin(x*10) + 0.3*rnorm(length(x))) sim_data <- sample_n(sim_process,50) %>% mutate(z = proc + 0.1*rnorm(length(x)), std = 0.1) coordinates(sim_data) = ~x + y# change into an sp object grid_BAUs <- auto_BAUs(manifold=real_line(), type="grid", data=sim_data, cellsize = c(0.01)) grid_BAUs$fs = 1 ### Set up SRE model G <- auto_basis(manifold = real_line(), data=sim_data, nres = 2, regular = 6, type = "bisquare", subsamp = 20000) expect_is(G,"Basis") c_res <- count_res(G) expect_is(c_res,"data.frame") expect_equal(c_res$res,c(1,2)) f <- z ~ 1 S <- SRE(f,list(sim_data),G, grid_BAUs, est_error = FALSE) c_res2 <- count_res(S) expect_identical(c_res,c_res2) expect_is(S,"SRE") ### Fit with 5 EM iterations so as not to take too much time S <- SRE.fit(S,n_EM = 3,tol = 1e-5,print_lik=FALSE) expect_is(S,"SRE") expect_is(info_fit(S),"list") ### Predict over BAUs using both modes grid_BAUs <- predict(S, covariances = TRUE) expect_is(grid_BAUs,"list") expect_equal(as.numeric(grid_BAUs$newdata$var), unname(diag(grid_BAUs$Cov))) grid_BAUs <- predict(S, obs_fs = FALSE, covariances = TRUE) expect_is(grid_BAUs,"list") expect_equal(as.numeric(grid_BAUs$newdata$var), unname(diag(grid_BAUs$Cov))) expect_equal(dim(grid_BAUs$Cov),rep(length(S@BAUs),2)) ### Check covariances option grid_BAUs <- predict(S) expect_is(grid_BAUs,"SpatialPixelsDataFrame") grid_BAUs <- predict(S,obs_fs = FALSE) expect_is(grid_BAUs,"SpatialPixelsDataFrame") print(coef(S)) ### Check alphahat alphahat <- coef(S) expect_is(alphahat, "numeric") expect_equal(length(alphahat), 1L) expect_equal(names(alphahat), "Intercept") ### summary/print/show works expect_true({summary(S);TRUE}) expect_true({print(S);TRUE}) expect_true({show(S);TRUE}) }) test_that("SRE 2D plane works",{ library(dplyr) library(sp) set.seed(1) ### Generate process and data sim_process <- expand.grid(x = seq(0,1,by=0.2),y = seq(0,1,by=0.2)) %>% mutate(proc = sin(x*10) + 0.3*rnorm(length(x))) sim_data <- sample_n(sim_process,10) %>% mutate(z = proc + 0.1*rnorm(length(x)), std = 0.1) coordinates(sim_data) = ~x + y# change into an sp object grid_BAUs <- auto_BAUs(manifold=plane(), type="grid", data=sim_data, cellsize = c(0.4), nonconvex_hull=FALSE) grid_BAUs$fs = 1 ### Set up SRE model G <- auto_basis(manifold = plane(), data=sim_data, nres = 1, regular = 1, type = "bisquare", subsamp = 20000) expect_is(G,"Basis") f <- z ~ 1 S <- SRE(f,list(sim_data),G, grid_BAUs, est_error = FALSE) expect_is(S,"SRE") ### Fit with 5 EM iterations so as not to take too much time S <- SRE.fit(S,n_EM = 3,tol = 1e-5,print_lik=FALSE) expect_is(S,"SRE") ### Predict over BAUs grid_BAUs <- predict(S) expect_is(grid_BAUs,"SpatialPixelsDataFrame") grid_BAUs <- predict(S,obs_fs = FALSE) expect_is(grid_BAUs,"SpatialPixelsDataFrame") ### summary works? expect_true({summary(S);TRUE}) }) test_that("SRE sphere works",{ library(dplyr) library(sp) ### Generate process and data sim_process <- expand.grid(lon = seq(-100,100,by=10),lat = seq(-50,50,by=10)) %>% mutate(proc = sin(lon*10) + 0.3*rnorm(length(lon))) sim_data <- sample_n(sim_process,100) %>% mutate(z = proc + 0.1*rnorm(length(lon)), std = 0.1) coordinates(sim_data) = ~lon + lat# change into an sp object slot(sim_data, "proj4string") = CRS("+proj=longlat +ellps=sphere") grid_BAUs <- auto_BAUs(manifold = sphere(), type = "hex", data = sim_data, isea3h_res = 2) grid_BAUs$fs = 1 ### Set up SRE model G <- auto_basis(manifold = sphere(), data=sim_data, nres = 1, type = "bisquare", subsamp = 20000) expect_is(G,"Basis") f <- z ~ 1 S <- SRE(f,list(sim_data),G, grid_BAUs, est_error = FALSE) expect_is(S,"SRE") ### Fit with 5 EM iterations so as not to take too much time S <- SRE.fit(S,n_EM = 3,tol = 1e-5,print_lik=FALSE) expect_is(S,"SRE") ### Predict over BAUs grid_BAUs <- predict(S) expect_is(grid_BAUs,"SpatialPolygonsDataFrame") grid_BAUs <- predict(S,obs_fs = FALSE) expect_is(grid_BAUs,"SpatialPolygonsDataFrame") ### summary works? expect_true({summary(S);TRUE}) }) test_that("SRE space-time sphere works",{ library(dplyr) library(sp) library(spacetime) ### Generate process and data set.seed(1) sim_process <- expand.grid(lon = seq(-100,100,by=20),lat = seq(-40,40,by=20),t=1:5) %>% mutate(proc = sin(lon*10) + 0.3*rnorm(length(lon))) sim_data <- sample_n(sim_process,100) %>% mutate(z = proc + 0.1*rnorm(length(lon)), std = 0.1) time <- as.POSIXct("2003-05-01",tz="") + 3600*24*(sim_data$t-1) space <- sim_data[,c("lon","lat")] coordinates(space) = ~lon+lat # change into an sp object proj4string(space)=CRS("+proj=longlat +ellps=sphere") sim_data$t <- NULL STobj <- STIDF(space,time,data=sim_data) grid_BAUs <- auto_BAUs(manifold=STsphere(), type="hex", isea3h_res=1, data=STobj) grid_BAUs$fs = 1 ### Set up SRE model G_spatial <- auto_basis(manifold = sphere(), data=as(STobj,"Spatial"), nres = 2, type = "bisquare", subsamp = 20000) G_temporal <- local_basis(manifold=real_line(),loc = matrix(c(1,3)),scale = rep(1,2)) G <- TensorP(G_spatial,G_temporal) expect_is(G,"TensorP_Basis") f <- z ~ 1 S <- SRE(f,list(STobj),G, grid_BAUs, est_error = FALSE) expect_is(S,"SRE") ### Fit with 5 EM iterations so as not to take too much time S <- SRE.fit(S,n_EM = 3,tol = 1e-5,print_lik=FALSE) expect_is(S,"SRE") ### Predict over BAUs grid_BAUs <- predict(S) expect_is(grid_BAUs,"STFDF") grid_BAUs <- predict(S,obs_fs = FALSE) expect_is(grid_BAUs,"STFDF") ### summary works? expect_true({summary(S);TRUE}) })