Package check result: ERROR Check: CRAN incoming feasibility, Result: NOTE Maintainer: ‘Juan Alberto Molina-Valero ’ Found the following (possibly) invalid file URIs: URI: www.czu.cz/en From: README.md URI: adaptbrdy.czu.cz/en From: README.md Check: examples, Result: ERROR Running examples in ‘FORTLS-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: tree.detection.multi.scan > ### Title: Tree-Level Variables Estimation > ### Aliases: tree.detection.multi.scan > > ### ** Examples > > > ## No test: > > # Establishment of working directories (optional) > # By default here we propose the current working directory of the R process > > dir.data <- getwd() > dir.result <- getwd() > > > # Loading example data of TLS multi-scan approach point cloud (LAZ file) to dir.data > > download.file( + "www.dropbox.com/scl/fi/es5pfj87wj0g6y8414dpo/PiceaAbies.laz?rlkey=ayt21mbndc6i6fyiz2e7z6oap&dl=1", + destfile = file.path(dir.data, "PiceaAbies.laz"), + mode = "wb") trying URL 'www.dropbox.com/scl/fi/es5pfj87wj0g6y8414dpo/PiceaAbies.laz?rlkey=ayt21mbndc6i6fyiz2e7z6oap&dl=1' Content type 'application/binary' length 12898220 bytes (12.3 MB) ================================================== downloaded 12.3 MB > > # Normalizing the whole point cloud data without considering arguments > > pcd <- normalize(las = "PiceaAbies.laz", + + id = "PiceaAbies", + + scan.approach = "multi", + + voxel_size = 0.01, + + dir.data = dir.data, dir.result = dir.result) /home/hornik/tmp/CRAN_special_donttest/FORTLS.Rcheck/FORTLS/python/voxel_grid_downsampling.py:7: RuntimeWarning: invalid value encountered in cast voxel_coord = tuple(np.floor(point / voxel_size).astype(int)) > > > # Tree detection without considering arguments > > tree.tls <- tree.detection.multi.scan(data = pcd, + + tls.precision = 0.05, + + slice = 0.2, + + threads = 2, + + dir.result = dir.result) Application of Statistical Outlier Removal (SOR) to the entire point cloud Retention of points with high verticality values Detection of tree stem axes Computing sections *** caught segfault *** address 0x55fc12c666d4, cause 'memory not mapped' Traceback: 1: dbscan_int(x, as.double(eps), as.integer(minPts), as.double(weights), as.integer(borderPoints), as.integer(search), as.integer(bucketSize), as.integer(splitRule), as.double(approx), frNN) 2: dbscan::dbscan(.cut[, c("x", "y"), drop = FALSE], eps = .eps, minPts = 10) 3: withCallingHandlers(expr, message = function(c) if (inherits(c, classes)) tryInvokeRestart("muffleMessage")) 4: suppressMessages(dbscan::dbscan(.cut[, c("x", "y"), drop = FALSE], eps = .eps, minPts = 10)) 5: doTryCatch(return(expr), name, parentenv, handler) 6: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7: tryCatchList(expr, classes, parentenv, handlers) 8: tryCatch(expr, error = function(e) { call <- conditionCall(e) if (!is.null(call)) { if (identical(call[[1L]], quote(doTryCatch))) call <- sys.call(-4L) dcall <- deparse(call, nlines = 1L) prefix <- paste("Error in", dcall, ": ") LONG <- 75L sm <- strsplit(conditionMessage(e), "\n")[[1L]] w <- 14L + nchar(dcall, type = "w") + nchar(sm[1L], type = "w") if (is.na(w)) w <- 14L + nchar(dcall, type = "b") + nchar(sm[1L], type = "b") if (w > LONG) prefix <- paste0(prefix, "\n ") } else prefix <- "Error : " msg <- paste0(prefix, conditionMessage(e), "\n") .Internal(seterrmessage(msg[1L])) if (!silent && isTRUE(getOption("show.error.messages"))) { cat(msg, file = outFile) .Internal(printDeferredWarnings()) } invisible(structure(msg, class = "try-error", condition = e))}) 9: try(suppressMessages(dbscan::dbscan(.cut[, c("x", "y"), drop = FALSE], eps = .eps, minPts = 10))) 10: tree.detection.multi.scan(data = pcd, tls.precision = 0.05, slice = 0.2, threads = 2, dir.result = dir.result) An irrecoverable exception occurred. R is aborting now ... Segmentation fault Check: for non-standard things in the check directory, Result: NOTE Found the following files/directories: ‘1.txt’ ‘2.txt’ ‘PiceaAbies.laz’ ‘PiceaAbies.txt’ ‘PinusRadiata.laz’ ‘PinusRadiata.txt’ ‘RB.G.angle.count.html’ ‘RB.G.fixed.area.html’ ‘RB.G.k.tree.html’ ‘RB.N.angle.count.html’ ‘RB.N.fixed.area.html’ ‘RB.N.k.tree.html’ ‘RB.V.angle.count.html’ ‘RB.angle.count.csv’ ‘RB.d.angle.count.html’ ‘RB.d.fixed.area.html’ ‘RB.d.k.tree.html’ ‘RB.fixed.area.csv’ ‘RB.h.angle.count.html’ ‘RB.h.fixed.area.html’ ‘RB.h.k.tree.html’ ‘RB.k.tree.csv’ ‘metrics.variables.angle.count.plot.csv’ ‘metrics.variables.fixed.area.plot.csv’ ‘metrics.variables.k.tree.plot.csv’ ‘opt.correlations.angle.count.pearson.html’ ‘opt.correlations.angle.count.spearman.html’ ‘opt.correlations.fixed.area.pearson.html’ ‘opt.correlations.fixed.area.spearman.html’ ‘opt.correlations.k.tree.pearson.html’ ‘opt.correlations.k.tree.spearman.html’ ‘simulations.angle.count.plot.csv’ ‘simulations.fixed.area.plot.csv’ ‘simulations.k.tree.plot.csv’