skip_on_cran() # set example reporting delay reporting_delay <- LogNormal( meanlog = Normal(0.6, 0.06), sdlog = Normal(0.5, 0.1), max = 10 ) reported_cases <- EpiNow2::example_confirmed[1:30] futile.logger::flog.threshold("FATAL") df_non_zero <- function(df) { expect_true(nrow(df) > 0) } expected_out <- c("estimates", "estimated_reported_cases", "summary", "plots", "timing") test_that("epinow produces expected output when run with default settings", { outputs <- capture.output(suppressMessages(suppressWarnings( out <- epinow( data = reported_cases, generation_time = gt_opts(example_generation_time), delays = delay_opts(c(example_incubation_period, reporting_delay)), stan = stan_opts( samples = 25, warmup = 25, cores = 1, chains = 2, control = list(adapt_delta = 0.8) ), logs = NULL, verbose = FALSE ) ))) expect_equal(names(out), expected_out) df_non_zero(out$estimates$samples) df_non_zero(out$estimates$summarised) df_non_zero(out$estimated_reported_cases$samples) df_non_zero(out$estimated_reported_cases$summarised) df_non_zero(out$summary) expect_equal(names(out$plots), c("summary", "infections", "reports", "R", "growth_rate")) }) test_that("epinow produces expected output when run with the cmdstanr backend", { skip_on_os("windows") output <- capture.output(suppressMessages(suppressWarnings( out <- epinow( data = reported_cases, generation_time = gt_opts(example_generation_time), delays = delay_opts(example_incubation_period + reporting_delay), stan = stan_opts(backend = "cmdstanr"), logs = NULL, verbose = FALSE ) ))) expect_equal(names(out), expected_out) df_non_zero(out$estimates$samples) df_non_zero(out$estimates$summarised) df_non_zero(out$estimated_reported_cases$samples) df_non_zero(out$estimated_reported_cases$summarised) df_non_zero(out$summary) expect_equal( names(out$plots), c("summary", "infections", "reports", "R", "growth_rate") ) }) test_that("epinow produces expected output when run with the laplace algorithm", { skip_on_os("windows") output <- capture.output(suppressMessages(suppressWarnings( out <- epinow( data = reported_cases, generation_time = gt_opts(example_generation_time), delays = delay_opts(example_incubation_period + reporting_delay), stan = stan_opts(method = "laplace", backend = "cmdstanr"), logs = NULL, verbose = FALSE ) ))) expect_equal(names(out), expected_out) df_non_zero(out$estimates$samples) df_non_zero(out$estimates$summarised) df_non_zero(out$estimated_reported_cases$samples) df_non_zero(out$estimated_reported_cases$summarised) df_non_zero(out$summary) expect_equal( names(out$plots), c("summary", "infections", "reports", "R", "growth_rate") ) }) test_that("epinow produces expected output when run with the pathfinder algorithm", { skip_on_os("windows") output <- capture.output(suppressMessages(suppressWarnings( out <- epinow( data = reported_cases, generation_time = gt_opts(example_generation_time), delays = delay_opts(example_incubation_period + reporting_delay), stan = stan_opts(method = "pathfinder", backend = "cmdstanr"), logs = NULL, verbose = FALSE ) ))) expect_equal(names(out), expected_out) df_non_zero(out$estimates$samples) df_non_zero(out$estimates$summarised) df_non_zero(out$estimated_reported_cases$samples) df_non_zero(out$estimated_reported_cases$summarised) df_non_zero(out$summary) expect_equal( names(out$plots), c("summary", "infections", "reports", "R", "growth_rate") ) }) test_that("epinow runs without error when saving to disk", { output <- capture.output(suppressMessages(suppressWarnings( out <- epinow( data = reported_cases, generation_time = gt_opts(example_generation_time), delays = delay_opts(example_incubation_period + reporting_delay), stan = stan_opts( samples = 25, warmup = 25, cores = 1, chains = 2, control = list(adapt_delta = 0.8) ), target_folder = tempdir(check = TRUE), logs = NULL, verbose = FALSE ) ))) expect_null(out) }) test_that("epinow can produce partial output as specified", { output <- capture.output(suppressMessages(suppressWarnings( out <- epinow( data = reported_cases, generation_time = gt_opts( example_generation_time, weight_prior = FALSE ), delays = delay_opts(example_incubation_period + reporting_delay), stan = stan_opts( samples = 25, warmup = 25, cores = 1, chains = 2, control = list(adapt_delta = 0.8) ), output = NULL, logs = NULL, verbose = FALSE ) ))) expect_equal(names(out), c("estimates", "estimated_reported_cases", "summary")) expect_null(out$estimates$samples) df_non_zero(out$estimates$summarised) expect_null(out$estimated_reported_cases$samples) df_non_zero(out$estimated_reported_cases$summarised) df_non_zero(out$summary) }) test_that("epinow fails as expected when given a short timeout", { expect_error(suppressWarnings(x = epinow( data = reported_cases, generation_time = gt_opts(example_generation_time), delays = delay_opts(example_incubation_period + reporting_delay), stan = stan_opts( samples = 100, warmup = 100, cores = 1, chains = 2, control = list(adapt_delta = 0.8), max_execution_time = 1 ), logs = NULL, verbose = FALSE ))) }) test_that("epinow fails if given NUTs arguments when using variational inference", { expect_error(capture.output(suppressMessages(suppressWarnings( epinow( data = reported_cases, generation_time = gt_opts(example_generation_time), delays = delay_opts(example_incubation_period + reporting_delay), stan = stan_opts( samples = 100, warmup = 100, cores = 1, chains = 2, method = "vb" ), logs = NULL, verbose = FALSE ) )))) }) test_that("epinow fails if given variational inference arguments when using NUTs", { expect_error(capture.output(suppressMessages(suppressWarnings( epinow( data = reported_cases, generation_time = gt_opts(example_generation_time), delays = delay_opts(example_incubation_period + reporting_delay), stan = stan_opts(method = "sampling", tol_rel_obj = 1), logs = NULL, verbose = FALSE ) )))) })