skip_on_cran() skip_on_os("windows") test_that("convolve can combine two pmfs as expected", { expect_equal( convolve_with_rev_pmf(c(0.1, 0.2, 0.7), rev(c(0.1, 0.2, 0.7)), 5), c(0.01, 0.04, 0.18, 0.28, 0.49), tolerance = 0.01 ) expect_equal( sum(convolve_with_rev_pmf( c(0.05, 0.55, 0.4), rev(c(0.1, 0.2, 0.7)), 5 )), 1 ) }) test_that("convolve performs the same as a numerical convolution", { # Sample and analytical PMFs for two Poisson distributions x <- rpois(10000, 3) xpmf <- dpois(0:20, 3) y <- rpois(10000, 5) ypmf <- dpois(0:20, 5) # Add sampled Poisson distributions up to get combined distribution z <- x + y # Analytical convolution of PMFs conv_pmf <- convolve_with_rev_pmf(xpmf, rev(ypmf), 41) conv_cdf <- cumsum(conv_pmf) # Empirical convolution of PMFs cdf <- ecdf(z)(0:40) # Test analytical and numerical convolutions are similar with a small error # allowed expect_lte(sum(abs(conv_cdf - cdf)), 0.1) }) test_that("convolve_dot_product can combine vectors as we expect", { expect_equal( convolve_with_rev_pmf(c(0.1, 0.2, 0.7), rev(c(0.1, 0.2, 0.7)), 3), c(0.01, 0.04, 0.18), tolerance = 0.01 ) expect_equal( convolve_with_rev_pmf( seq_len(10), rev(c(0.1, 0.4, 0.3, 0.2)), 10 ), c(0.1, 0.6, 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4) ) x <- seq_len(10) x[2:10] <- x[1:9] / 2 x[1] <- 0 expect_equal( convolve_with_rev_pmf( seq_len(10), rev(c(0, 0.5, 0, 0)), 10 ), x ) })