library("EpiILM") set.seed(789) # generating the XY coordinates of individuals: x <- runif(256, 0, 100) y <- runif(256, 0, 100) # generating the sus. covariate: A <- round(rexp(256, 1/100)) # simulating an epidemic: out_cov <- epidata(type = "SI", n = 256, tmax = 10, x = x, y = y, Sformula = ~A, sus.par = c(0.01, 0.05), beta = 2) # performing the MCMC using the epimcmc function: t_end <- max(out_cov$inftime) unif_range <- matrix(c(0, 0, 1, 1), nrow = 2, ncol = 2) mcmcout_M8 <- epimcmc(out_cov, Sformula = ~A, tmax = t_end, niter = 100, sus.par.ini = c(0.03, 0.005), beta.ini = 2, pro.sus.var = c(0.005, 0.005), pro.beta.var = 0.01, prior.sus.dist = c("uniform", "uniform"), prior.sus.par = unif_range, prior.beta.dist = "uniform", prior.beta.par = c(0, 10), adapt = TRUE, acc.rate = 0.5) summary(mcmcout_M8) mcmcout_M9 <- epimcmc(out_cov, tmax = t_end, niter = 100, sus.par.ini = 0.01, beta.ini = 2, pro.sus.var = 0.1, pro.beta.var = 0.5, prior.sus.dist = "uniform", prior.sus.par = c(0, 3), prior.beta.dist = "uniform", prior.beta.par = c(0, 10), adapt = TRUE, acc.rate = 0.5) summary(mcmcout_M9) #set.seed(23456) predepi1<-pred.epi(object = out_cov, xx = mcmcout_M8, criterion = "newly infectious", n.samples = 50, tmin = 1, Sformula = ~A) loglike1 <- epilike(object = out_cov, tmax = t_end, Sformula = ~A, sus.par = c(0.08806, 0.04421), beta = 1.96839) loglike2 <- epilike(object = out_cov, tmax = t_end, sus.par = 0.735, beta = 1.554) dic1 <- epidic(burnin = 10, niter = 100, LLchain = mcmcout_M8$Loglikelihood, LLpostmean = loglike1) dic1 dic2 <- epidic(burnin = 10, niter = 100, LLchain = mcmcout_M9$Loglikelihood, LLpostmean = loglike2) dic2