skip_on_cran() require(testthat) context("PISA data reads in correctly") require(WeMix) options(width = 500) options(useFancyQuotes = FALSE) source("REF-4-pisa.R") # has REF output in it if (!dir.exists(edsurveyHome)) { dir.create(edsurveyHome) } # able to toggle 'forceReread' for recaching the data if necessary if (!exists("forceCacheUpdate")) { forceCacheUpdate <- FALSE } # Test ================= # 1. Check data read-in test_that("PISA data reads in correctly", { expect_silent(downloadPISA(root = edsurveyHome, year = c(2000, 2003, 2006, 2009, 2012, 2015, 2018), cache = FALSE, verbose = FALSE)) expect_silent(downloadPISA(root = edsurveyHome, year = 2012, database = "CBA", cache = FALSE, verbose = FALSE)) expect_silent(usaINT2015 <<- readPISA(file.path(edsurveyHome, "PISA/2015"), countries = "usa", verbose = FALSE, forceReread = forceCacheUpdate)) expect_silent(usaINT2012 <<- readPISA(file.path(edsurveyHome, "PISA/2012"), countries = "usa", verbose = FALSE, forceReread = forceCacheUpdate)) expect_silent(qcnCBA2012 <<- readPISA(file.path(edsurveyHome, "PISA/2012"), database = "CBA", countries = "qcn", verbose = FALSE, forceReread = forceCacheUpdate)) # Shanghai expect_silent(jpn2009 <<- readPISA(file.path(edsurveyHome, "PISA/2009"), countries = "jpn", verbose = FALSE, forceReread = forceCacheUpdate)) expect_silent(aus2006 <<- readPISA(file.path(edsurveyHome, "PISA/2006"), countries = "aus", verbose = FALSE, forceReread = forceCacheUpdate)) expect_silent(aus2003 <<- readPISA(file.path(edsurveyHome, "PISA/2003"), countries = "aus", verbose = FALSE, forceReread = forceCacheUpdate)) expect_warning( usa2000 <<- readPISA(file.path(edsurveyHome, "PISA/2000"), countries = "usa", verbose = FALSE, forceReread = forceCacheUpdate), "Cannot find both PSU and Stratum variables on data." ) # 2000 complains about the PSU variable not being present expect_is(usaINT2015, "edsurvey.data.frame") expect_is(usaINT2012, "edsurvey.data.frame") expect_is(qcnCBA2012, "edsurvey.data.frame") expect_is(jpn2009, "edsurvey.data.frame") expect_is(aus2006, "edsurvey.data.frame") expect_is(usa2000, "edsurvey.data.frame") expect_equal(dim(usaINT2015), c(5712, 3715)) expect_equal(dim(usaINT2012), c(4978, 1263)) expect_equal(dim(qcnCBA2012), c(5177, 1346)) expect_equal(dim(jpn2009), c(6088, 982)) expect_equal(dim(aus2006), c(14170, 1022)) }) # Check multiple-path read-in test_that("PISA multiple path read-in", { multiESDFL <- readPISA(paste0(edsurveyHome, c("PISA/2009", "PISA/2012", "PISA/2015")), countries = "usa", verbose = FALSE) expect_is(multiESDFL, "edsurvey.data.frame.list") expect_equal(colnames(multiESDFL$covs), c("subject", "year", "country")) expect_equal(length(multiESDFL$datalist), 3) }) context("PISA showPlausibleValues and showWeights verbose output agrees") test_that("PISA showPlausibleValues and showWeights verbose output agrees", { co <- capture.output(showPlausibleValues(usaINT2012, verbose = TRUE)) expect_equal(co, pvREF) co <- capture.output(showWeights(usaINT2012, verbose = TRUE)) expect_equal(co, swREF) }) context("PISA getData") test_that("PISA getData", { expect_known_value(head(gd0 <- EdSurvey::getData(usaINT2015, c("st004d01t", "st001d01t"))), file = "PISAgd0.rds", update = FALSE) expect_known_value(head(gd1 <- EdSurvey::getData(usaINT2012, c("st04q01", "st20q01"))), file = "PISAgd1.rds", update = FALSE) expect_known_value(head(gd2 <- EdSurvey::getData(qcnCBA2012, c("st04q01", "st20q01"))), file = "PISAgd2.rds", update = FALSE) expect_known_value(head(gd3 <- EdSurvey::getData(jpn2009, c("s514q03", "bookid"))), file = "PISAgd3.rds", update = FALSE) expect_known_value(head(gd4 <- EdSurvey::getData(aus2006, c("isi"))), file = "PISAgd4.rds", update = FALSE) }) context("PISA subset data") test_that("PISA subset data", { usa12_female <- subset(usaINT2012, st04q01 == "Female", verbose = FALSE) expect_equal(dim(usa12_female), c(2453, 1263)) }) context("PISA showCutPoints") test_that("PISA showCutPoints", { co <- capture.output(showCutPoints(qcnCBA2012)) expect_equal(co, scREF) }) # 2. Check analytical functions context("PISA edsurveyTable") test_that("PISA edsurveyTable", { edTable1 <- edsurveyTable(math ~ st04q01 + st20q01, data = usaINT2012) withr::with_options( list(digits = 7), edTable1c <- capture.output(edTable1) ) expect_equal(edTable1c, pisaedTable1REF) }) context("PISA lm.sdf") test_that("PISA lm.sdf", { plm1 <- lm.sdf(macq ~ st29q06 + sc01q01, data = usaINT2012) withr::with_options( list(digits = 7), plm1c <- capture.output(plm1) ) expect_equal(plm1c, plm1REF) }) context("PISA gap") test_that("PISA gap", { pgap1 <- gap( variable = "math", data = usaINT2012, groupA = st04q01 == "Male", groupB = st04q01 == "Female", weightVar = "w_fstuwt" ) withr::with_options( list(digits = 7), pgap1c <- capture.output(pgap1) ) expect_equal(pgap1c, pgap1REF) pgap2 <- gap( variable = "math", data = usaINT2012, groupA = st04q01 == "Male", groupB = st04q01 == "Female", weightVar = "w_fstuwt", percentiles = c(50, 90), pctMethod = "symmetric" ) withr::with_options(list(digits = 7), pgap2c <- capture.output(pgap2)) expect_equal(pgap2c, pgap2REF) }) context("PISA achievementLevels") test_that("PISA achievementLevels", { al1 <- achievementLevels(achievementVars = "cpro", aggregateBy = "st04q01", data = qcnCBA2012) withr::with_options(list(digits = 7), al1c <- capture.output(al1)) expect_equal(al1c, al1REF) }) context("PISA glm") test_that("PISA glm", { logit1 <- logit.sdf(I(st04q01 == "Male") ~ st20q01 + st48q01 + st87q01, data = qcnCBA2012) coefREF <- c( "(Intercept)" = 0.898510256928794, "st20q01Other country" = -0.637039679070128, "st48q01Courses after school Test Language" = 0.0570384010137383, "st87q01Agree" = -1.02420699129252, "st87q01Disagree" = -0.984759761693152, "st87q01Strongly disagree" = -0.896205635267306 ) expect_equal(coef(logit1), coefREF) se <- c( "(Intercept)" = 0.383392563610423, "st20q01Other country" = 0.481575743890542, "st48q01Courses after school Test Language" = 0.1112482333064, "st87q01Agree" = 0.418721001158844, "st87q01Disagree" = 0.38157294795411, "st87q01Strongly disagree" = 0.400877207648506 ) expect_equal(logit1$se, se) }) context("PISA cor") test_that("PISA cor", { usa2000$omittedLevels <- c(usa2000$omittedLevels, "Mis") # add 'Mis' here to match cor_drop <- cor.sdf("read", "st21q02", usa2000, method = "Pearson", weightVar = "w_fstuwt_read", jrrIMax = Inf, dropOmittedLevels = TRUE) cor_nodrop <- cor.sdf("read", "st21q02", usa2000, method = "Pearson", weightVar = "w_fstuwt_read", jrrIMax = Inf, dropOmittedLevels = FALSE) withr::with_options(list(digits = 7), cor_dropc <- capture.output(cor_drop)) withr::with_options(list(digits = 7), cor_nodropc <- capture.output(cor_nodrop)) cor1REF <- c( "Method: Pearson", "full data n: 3846", "n used: 3634", "", "Correlation: -0.1345117", "Standard Error: 0.01830193", "Confidence Interval: [-0.170717, -0.09794362]", "", "Correlation Levels:", " Levels for Variable 'st21q02' (Lowest level first):", " 1. Yes", " 2. No" ) expect_equal(cor_dropc, cor1REF) cor2REF <- c( "Method: Pearson", "full data n: 3846", "n used: 3846", "", "Correlation: -0.125838", "Standard Error: 0.03567593", "Confidence Interval: [-0.1958661, -0.054533]", "", "Correlation Levels:", " Levels for Variable 'st21q02' (Lowest level first):", " 1. Yes", " 2. No", " 3. Mis") expect_equal(cor_nodropc, cor2REF) })