require(testthat) require(EdSurvey) options(width = 500) options(useFancyQuotes = FALSE) options(digits = 7) sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer")) source("REF-0-main.R") # has REF output in it # ideally this wouldn't trip up any of the scope fixes below dsex <- "should not be used" context("wd is set correctly") # When this fails all regression tests are invalid. test_that("wd is set correctly", { skip_on_cran() expect_is(es1_ <- readRDS("regression.rds"), "data.frame") }) context("Primer reads in correctly") test_that("Primer reads in correctly", { expect_is(sdf, "edsurvey.data.frame") expect_equal(dim(sdf), c(17606, 303)) expect_equal(c(nrow(sdf), ncol(sdf)), c(17606, 303)) }) context("$ assign") test_that("$ assign", { # subset then assign sdfM <- subset(sdf, dsex == "Male") sdfM$books <- ifelse(sdfM$b013801 %in% c("0-10", "11-25"), "0-25 books", "26+ books") sdf$books <- ifelse(sdf$b013801 %in% c("0-10", "11-25"), "0-25 books", "26+ books") sdfM2 <- subset(sdf, dsex == "Male") tab <- table(sdfM$books, sdfM2$books) diag(tab) <- 0 expect_equal(as.vector(tab), rep(0, 4)) # assign a new variable sdf$a <- sdf$dsex tab <- table(sdf$a, sdf$dsex) expect_equal(tab, assignTableREF) # overwrite a variable, common for recoding # note: dsex has no NAs on the reporting sample sdf$dsex <- ifelse(sdf$dsex %in% "Male", "boy", "girl") tab2 <- table(sdf$a, sdf$dsex) expect_equal(unname(tab2), unname(assignTableREF)) expect_warning(sdf$a[1:5] <- "invalid", "factor level") # repeated to be sure this does not throw an error, which it used to expect_warning(sdf$a[1:5] <- "invalid", "factor level") # reset sdf sdf <- readNAEP(system.file("extdata/data", "M36NT2PM.dat", package = "NAEPprimer")) }) context("showPlausibleValues and showWeights verbose output agrees") test_that("showPlausibleValues and showWeights verbose output agrees", { skip_on_cran() spv <- c( "There are 6 subject scale(s) or subscale(s) in this edsurvey.data.frame:", "'num_oper' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'mrps11', 'mrps12', 'mrps13', 'mrps14', and 'mrps15'", "", "'measurement' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'mrps21', 'mrps22', 'mrps23', 'mrps24', and 'mrps25'", "", "'geometry' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'mrps31', 'mrps32', 'mrps33', 'mrps34', and 'mrps35'", "", "'data_anal_prob' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'mrps41', 'mrps42', 'mrps43', 'mrps44', and 'mrps45'", "", "'algebra' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'mrps51', 'mrps52', 'mrps53', 'mrps54', and 'mrps55'", "", "'composite' subject scale or subscale with 5 plausible values (the default).", " The plausible value variables are: 'mrpcm1', 'mrpcm2', 'mrpcm3', 'mrpcm4', and 'mrpcm5'", "" ) co <- capture.output(showPlausibleValues(sdf, verbose = TRUE)) expect_equal(co, spv) skip_on_cran() sw <- c( "There is 1 full sample weight in this edsurvey.data.frame:", " 'origwt' with 62 JK replicate weights (the default).", " Jackknife replicate weight variables associated with the full sample weight 'origwt':", " 'srwt01', 'srwt02', 'srwt03', 'srwt04', 'srwt05', 'srwt06', 'srwt07', 'srwt08', 'srwt09', 'srwt10', 'srwt11', 'srwt12', 'srwt13', 'srwt14', 'srwt15', 'srwt16', 'srwt17', 'srwt18', 'srwt19', 'srwt20', 'srwt21', 'srwt22', 'srwt23', 'srwt24', 'srwt25', 'srwt26', 'srwt27', 'srwt28', 'srwt29', 'srwt30', 'srwt31', 'srwt32', 'srwt33', 'srwt34', 'srwt35', 'srwt36', 'srwt37', 'srwt38', 'srwt39', 'srwt40', 'srwt41', 'srwt42', 'srwt43', 'srwt44',", " 'srwt45', 'srwt46', 'srwt47', 'srwt48', 'srwt49', 'srwt50', 'srwt51', 'srwt52', 'srwt53', 'srwt54', 'srwt55', 'srwt56', 'srwt57', 'srwt58', 'srwt59', 'srwt60', 'srwt61', and 'srwt62'", "" ) withr::with_options( list(digits = 4, width = 500), co <- capture.output(showWeights(sdf, verbose = TRUE)) ) expect_equal(co, sw) }) context("searchSDF") test_that("searchSDF", { search1 <- searchSDF(string = c("home", "book"), data = sdf) search2 <- searchSDF(string = c("home|book"), data = sdf) search3 <- searchSDF(string = "value", data = sdf, levels = TRUE) # drop 'fileFormat' var for quick comparison, update the RDS when able search1$fileFormat <- NULL search2$fileFormat <- NULL search3$fileFormat <- NULL searchSDFVector <- readRDS(file = "searchSDFVector.rds") searchSDFOR <- readRDS(file = "searchSDFOr.rds") searchSDFLevels <- readRDS(file = "searchSDFLevels.rds") expect_equal(search1, searchSDFVector) expect_equal(search2, searchSDFOR) expect_equal(search3, searchSDFLevels) }) context("showCodebook") test_that("showCodebook", { cb <- showCodebook(sdf, "school") sdfRecode <- recode.sdf(sdf, recode = list(dsex = list(from = c("Male"), to = c("MALE")))) cb2 <- showCodebook(sdfRecode, c("student", "school"), labelLevels = FALSE, includeRecodes = TRUE) expect_known_value(cb, file = "showCodebook.rds", update = FALSE) expect_known_value(cb2, file = "showCodebookRecodes.rds", update = FALSE) }) context("getData") test_that("getData", { expect_known_value(gd1 <- getData(sdf, c("dsex", "b017451")), file = "gd1.rds", update = FALSE) skip_on_cran() expect_known_value(gd2 <- getData(sdf, c("dsex", "b017451"), defaultConditions = FALSE), file = "gd2.rds", update = FALSE) expect_known_value(gd3 <- getData(sdf, c("dsex", "b017451"), dropUnusedLevels = FALSE), file = "gd3.rds", update = FALSE) expect_known_value(gd4 <- getData(sdf, c("dsex", "b017451"), dropOmittedLevels = TRUE, includeNaLabel = FALSE), file = "gd4.rds", update = FALSE) expect_known_value(gd5 <- getData(sdf, c("dsex", "b017451"), dropOmittedLevels = TRUE, includeNaLabel = TRUE), file = "gd5.rds", update = FALSE) gd6 <- getData(sdf, formula = composite ~ dsex + b017451) gd6 <- gd6[c(1:50, (nrow(gd6) - 50):nrow(gd6)), ] # this file was larger. slim down a bit. expect_known_value(gd6, file = "gd6.rds", update = FALSE, check.attributes = FALSE) # TEMPORARILY HAVE IT SKIP ATTRIBUTE CHECKS gddat <- getData(sdf, c("composite", "geometry", "dsex", "sdracem", "pared", "b017451", "origwt"), addAttributes = TRUE, dropOmittedLevels = FALSE ) gddat <- gddat[c(1:50, (nrow(gddat) - 50):nrow(gddat)), ] # this file was larger. slim down a bit. attributes(gddat)$dataList$Student$lafObject <- NULL attributes(gddat)$dataList$School$lafObject <- NULL attributes(gddat)$fr2Path <- NULL attributes(gddat)$scoreCard <- NULL attributes(gddat)$dichotParamTab <- NULL attributes(gddat)$polyParamTab <- NULL attributes(gddat)$adjustedData <- NULL attributes(gddat)$scoreFunction <- NULL attributes(gddat)$testData <- NULL attributes(gddat)$scoreDict <- NULL attributes(gddat)$cacheDataLevelName <- NULL attributes(gddat)$dataList$Student$conflictLevels <- NULL attributes(gddat)$dataList$School$conflictLevels <- NULL expect_known_value(gddat, file = "gddat.rds", update = FALSE) expect_known_value(gd7 <- getData(sdf, c("dsex", "b017451")), file = "gd7.rds", update = FALSE) expect_known_value(gd8 <- getData(sdf, c("dsex", "c052601"), dropUnusedLevels = FALSE), file = "gd8.rds", update = FALSE) # schoolMergeVarStudent="scrpsu", schoolMergeVarSchool="sscrpsu" df2 <- getData(sdf, c("dsex", "b017451"), recode = list( b017451 = list( from = c( "Never or hardly ever", "Once every few weeks", "About once a week" ), to = c("Infrequently") ), b017451 = list( from = c( "2 or 3 times a week", "Every day" ), to = c("Frequently") ) ) ) expect_known_value(df2, file = "df2.rds", update = FALSE) # use recode for both recodes df2B <- recode.sdf(sdf, recode = list( b017451 = list( from = c( "Never or hardly ever", "Once every few weeks", "About once a week" ), to = c("Infrequently") ), b017451 = list( from = c( "2 or 3 times a week", "Every day" ), to = c("Frequently") ) )) df2C <- getData(df2B, c("dsex", "b017451")) expect_equal(df2, df2C) # use recode for just one and get data for the other df2D <- recode.sdf(sdf, recode = list(b017451 = list( from = c( "Never or hardly ever", "Once every few weeks", "About once a week" ), to = c("Infrequently") ))) df2E <- getData(df2D, c("dsex", "b017451"), recode = list(b017451 = list( from = c( "2 or 3 times a week", "Every day" ), to = c("Frequently") )) ) expect_equal(df2, df2E) # numeric recodes df3 <- getData(sdf, c("dsex", "b017451"), recode = list( b017451 = list( from = c(1, 2, 3), to = c("Infrequently") ), b017451 = list( from = c(4, 5), to = c("Frequently") ) ) ) expect_equal(df2, df3) # recode by label and numeric agree sdf_males <- EdSurvey:::subset(sdf, dsex == "Male", verbose = FALSE) expect_equal(dim(sdf_males), c(8905, 303)) sdf_males <- EdSurvey:::subset(sdf, dsex %in% "Male", verbose = FALSE) expect_equal(dim(sdf_males), c(8905, 303)) # test bad subset, a$bb does not exist expect_error(EdSurvey:::subset(sdf, dsex %in% a$bb, verbose = FALSE)) expect_error(EdSurvey:::subset(sdf, dsex %in% bb$a, verbose = FALSE)) # test subset using an element from the parent frame # does not work in testthat with test() if (FALSE) { print(search()) env <- new.env(hash = TRUE, parent = .GlobalEnv, size = 1L) assign("a", list(b = "Male"), envir = env) sdf_males <- with(env, EdSurvey:::subset(sdf, dsex %in% a$b, verbose = FALSE)) expect_equal(dim(sdf_males), c(8905, 303)) } }) context("getData order of userConditions") test_that("getData order of userConditions", { # subset first, then recode sdf_males <- subset(sdf, dsex %in% "Male") sdf_males <- recode.sdf(sdf_males, recode = list(dsex = list(from = "Male", to = "Boy"))) gdat1 <- getData(sdf_males, c("dsex")) expect_equal(nrow(gdat1), 8486) expect_equal(unique(as.character(gdat1$dsex)), "Boy") # recode first then subset sdf_males <- recode.sdf(sdf, recode = list(dsex = list(from = "Male", to = "Boy"))) sdf_males <- subset(sdf_males, dsex %in% "Boy") gdat2 <- getData(sdf_males, c("dsex")) expect_equal(gdat2, gdat1) }) context("rename.sdf") test_that("rename.sdf", { skip_on_cran() # check rename only sdf_rename <- rename.sdf(sdf, c("dsex", "composite", "origwt"), c("gender", "composite0", "totwgt")) expect_equal(attr(getAttributes(sdf_rename, "pvvars"), "default"), "composite0") expect_equal(attr(getAttributes(sdf_rename, "weights"), "default"), "totwgt") gDat1 <- getData(sdf, c("dsex", "composite", "origwt")) gDat2 <- getData(sdf_rename, c("gender", "composite0", "totwgt")) names(gDat1) <- NULL names(gDat2) <- NULL expect_equal(gDat1, gDat2) expect_equal(levelsSDF("dsex", sdf)$dsex, levelsSDF("gender", sdf_rename)$gender) # check rename along with subset and recode.sdf sdf_males <- subset(sdf, dsex %in% "Male") gDat1 <- getData(sdf_males, "dsex") sdf_males <- rename.sdf(sdf_males, "dsex", "gender") sdf_males <- recode.sdf(sdf_males, list(gender = list(from = "Male", to = "Boy"))) gDat2 <- getData(sdf_males, "gender") expect_equal(as.numeric(table(gDat1$dsex)), as.numeric(table(gDat2$gender))) # complicated order of operations sdf_rename <- rename.sdf(sdf, "sdracem", "race") sdf_rename <- subset(sdf_rename, !race %in% c("Omitted")) sdf_rename <- rename.sdf(sdf_rename, "race", "race_recode") sdf_rename <- recode.sdf(sdf_rename, recode = list(race_recode = list( from = c("Hispanic", "Asian/Pacific Island", "Amer Ind/Alaska Natv"), to = "Other" ))) sdf_rename <- subset(sdf_rename, race_recode %in% "Other") expect_equal(nrow(sdf_rename), nrow(subset(sdf, sdracem %in% c("Hispanic", "Asian/Pacific Island", "Amer Ind/Alaska Natv", "Other")))) }) context("subset throws an error") test_that("subset throws an error", { expect_error(sdf_error <- subset(sdf, dsex1 %in% "Male")) expect_error(sdf_error <- subset(sdf, dsex == "Male" & dsex1 == "Male")) }) context("lm.sdf") lm1 <- lm.sdf(~ dsex + b017451, sdf) slm1 <- summary(lm1, src = TRUE) slm1$formula <- NULL slm1$call <- NULL slm1$data <- NULL slm1$residuals <- head(lm1$residuals) slm1$PV.residuals <- head(lm1$PV.residuals) slm1$PV.fitted.values <- head(lm1$PV.fitted.values) slm1_read <- readRDS(file = "lm1.rds") expect_equal(slm1, slm1_read) test_that("lm.sdf", { skip_on_cran() lm1S <- lm.sdf(~ dsex + b017451, sdf, standardizeWithSamplingVar = TRUE) withr::with_options( list(digits = 4), slm1Scoef <- capture.output(summary(lm1S, src = TRUE)$coefmat) ) expect_equal(slm1Scoef, stdCoefREF) lm10 <- lm.sdf(composite ~ dsex + b017451, sdf) lm10B <- lm.sdf(composite ~ dsex + b017451, sdf, weightVar = "origwt") lm10C <- lm.sdf(composite ~ dsex + b017451, sdf, weightVar = origwt) lm10D <- lm.sdf(composite ~ dsex + b017451, sdf, weightVar = c("origwt")) expect_equal(coef(lm10), coef(lm10B)) expect_equal(coef(lm10), coef(lm10C)) expect_equal(coef(lm10), coef(lm10D)) fe <- file.exists("lm10.rds") skip_if_not(fe, message = "Skipping test with large file unallowed by CRAN") lm10 <- lm.sdf(composite ~ dsex + b017451, sdf) lm10$data <- NULL lm10$residuals <- head(lm10$residuals) lm10$PV.residuals <- head(lm10$PV.residuals) lm10$PV.fitted.values <- head(lm10$PV.fitted.values) expect_known_value(lm10, "lm10.rds", update = FALSE) lm1f <- lm.sdf(composite ~ dsex + b017451, sdf, relevels = list(dsex = "Female")) lm1f$data <- NULL lm1f$residuals <- head(lm1f$residuals) lm1f$PV.residuals <- head(lm1f$PV.residuals) lm1f$PV.fitted.values <- head(lm1f$PV.fitted.values) expect_known_value(lm1f, "lm1f.rds", update = FALSE) lm1re <- lm.sdf(composite ~ dsex + b017451, sdf, recode = list(dsex = list(from = "Male", to = "MALE"))) lm1re$data <- NULL lm1re$residuals <- head(lm1re$residuals) lm1re$PV.residuals <- head(lm1re$PV.residuals) lm1re$PV.fitted.values <- head(lm1re$PV.fitted.values) expect_known_value(lm1re, "lm1re.rds", update = FALSE) # test that lfactor levels can be used in relevels argument lm1f2 <- lm.sdf(composite ~ dsex + b017451, sdf, jrrIMax = 1, relevels = list(dsex = 2)) lm1f2$data <- NULL lm1f2$residuals <- head(lm1f2$residuals) lm1f2$PV.residuals <- head(lm1f2$PV.residuals) lm1f2$PV.fitted.values <- head(lm1f2$PV.fitted.values) # calls will not be equal lm1f$call <- lm1f2$call <- NULL expect_equal(lm1f, lm1f2) expect_equal(summary(lm1f), summary(lm1f2)) }) context("lm.sdf Taylor series") expect_is( sdf_taylor <- lm.sdf(composite ~ sdracem + dsex + pared, subset(sdf, pared == 1 | pared == 2, verbose = FALSE), weightVar = "origwt", varMethod = "Taylor", jrrIMax = Inf ), "edsurveyLm" ) expect_is( sdf_taylor <- lm.sdf(composite ~ sdracem + dsex + pared, data = subset(sdf, pared == 1 | pared == 2, verbose = FALSE), weightVar = "origwt", varMethod = "Taylor", jrrIMax = Inf ), "edsurveyLm" ) sdf_taylorWV <- lm.sdf(composite ~ sdracem + dsex + pared, subset(sdf, pared == 1 | pared == 2, verbose = FALSE), weightVar = origwt, varMethod = "Taylor", jrrIMax = Inf ) sdf_taylorWV$call <- sdf_taylor$call <- NULL expect_equal(sdf_taylor, sdf_taylorWV) lm1t <- lm.sdf(composite ~ dsex + b017451, sdf, varMethod = "Taylor") lm1t$data <- NULL lm1t$residuals <- head(lm1t$residuals) lm1t$PV.residuals <- head(lm1t$PV.residuals) lm1t$PV.fitted.values <- head(lm1t$PV.fitted.values) expect_known_value(lm1t, "lm1t.rds", update = FALSE) lm1jk <- lm.sdf(composite ~ dsex + b017451, sdf, varMethod = "jackknife") expect_equal(coef(lm1t), coef(lm1jk)) lm1jk$data <- NULL lm1jk$residuals <- head(lm1jk$residuals) lm1jk$PV.residuals <- head(lm1jk$PV.residuals) lm1jk$PV.fitted.values <- head(lm1jk$PV.fitted.values) lm1jk <- summary(lm1jk, src = TRUE) lm1jk.ref <- readRDS("lm1.rds") lm1jk$call <- lm1jk.ref$call <- NULL lm1jk$formula <- NULL expect_equal(lm1jk, lm1jk.ref) # estimates should agree too test_that("lm.sdf Taylor series", { skip_on_cran() lm2ta <- lm.sdf(composite ~ dsex + sdracem + yrsmath, sdf, varMethod = "Taylor") lm2jka <- lm.sdf(composite ~ dsex + sdracem + yrsmath, sdf, varMethod = "jackknife") # check only estimates expect_equal(coef(lm2ta), coef(lm2jka)) lm2t <- lm.sdf(composite ~ dsex + sdracem + yrsmath, sdf, relevels = list(dsex = "Female"), varMethod = "Taylor") lm2t$data <- NULL lm2t$residuals <- head(lm2t$residuals) lm2t$PV.residuals <- head(lm2t$PV.residuals) lm2t$PV.fitted.values <- head(lm2t$PV.fitted.values) expect_known_value(lm2t, "lm2t.rds", update = FALSE) lm2jk <- lm.sdf(composite ~ dsex + sdracem + yrsmath, sdf, varMethod = "jackknife", relevel = list(dsex = "Female"), jrrIMax = 1) lm2jk$data <- NULL lm2jk$residuals <- head(lm2jk$residuals) lm2jk$PV.residuals <- head(lm2jk$PV.residuals) lm2jk$PV.fitted.values <- head(lm2jk$PV.fitted.values) lm2jk$call <- NULL expect_known_value(lm2jk, "lm2.rds", update = FALSE) expect_equal(coef(lm2t), coef(lm2jk)) }) context("edsurveyTable") test_that("edsurveyTable", { skip_on_cran() # two levels, results checked vs Primer es1 <- edsurveyTable(composite ~ dsex + b017451, sdf, jrrIMax = 1) es1c <- capture.output(es1) expect_equal(es1c, es1REF) # test no LHS variable es10 <- edsurveyTable(~ dsex + b017451, sdf, jrrIMax = 1) es10c <- capture.output(es10) expect_equal(es10c, es1REF) # check for just males (dsex is only occupied at one level) sdfm <- subset(sdf, dsex == "Male", verbose = FALSE) es2 <- edsurveyTable(composite ~ dsex + b017451, sdfm, jrrIMax = Inf) es2c <- capture.output(es2) expect_equal(es2c, es2REF) # test dropOmittedLevels es2b <- edsurveyTable(composite ~ dsex + b017451, sdfm, jrrIMax = 1, dropOmittedLevels = FALSE) es2bc <- capture.output(es2b) expect_equal(es2bc, es2bREF) # test unbalanced tables, this check verified. See email from Ting on 10/1/2015 at 5:25 Eastern es3 <- edsurveyTable(composite ~ lep + ell3, sdf, jrrIMax = 1) es3c <- capture.output(es3) expect_equal(es3c, es3REF) # check return.means and return.sepct arguments es3b <- edsurveyTable(composite ~ lep + ell3, sdf, jrrIMax = 1, returnMeans = FALSE) expect_equal(es3b$data, es3b$data[, c("lep", "ell3", "N", "WTD_N", "PCT", "SE(PCT)")]) es3c <- edsurveyTable(composite ~ lep + ell3, sdf, jrrIMax = 1, returnMeans = FALSE, returnSepct = FALSE) expect_equal(es3c$data, es3$data[, c("lep", "ell3", "N", "WTD_N", "PCT")]) # test unbalanced tables, with three levels. This check verified. See email from Ting on 10/1/2015 at 5:25 Eastern es4 <- edsurveyTable(composite ~ lep + ell3 + dsex, sdf, jrrIMax = 1) es4c <- capture.output(es4) expect_equal(es4c, es4REF) # test LHS variable that isn't composite es11 <- edsurveyTable(b017451 ~ dsex, sdf) es11c <- capture.output(es11) expect_equal(es11c, es11REF1) # recode es1r <- edsurveyTable(composite ~ dsex + b017451, sdf, jrrIMax = 1, recode = list(dsex = list(from = "Male", to = "MALE"))) es1rc <- capture.output(es1r) expect_equal(es1rc, es1rREF) # test omitted levels problematic sparseness case suppressWarnings(es5 <- edsurveyTable(composite ~ dsex + b017451 + b003501, data = sdf, dropOmittedLevels = FALSE, pctAggregationLevel = 2)) es5c <- capture.output(es5) expect_equal(es5c, es5REF) }) context("edsurveyTable with N=0") test_that("edsurveyTable with N=0", { skip_on_cran() expect_warning(es0 <- edsurveyTable(~ b003501 + m815401, data = sdf, dropOmittedLevels = FALSE)) esDF <- getData(sdf, c("b003501", "m815401"), dropOmittedLevels = FALSE) esDFtable <- as.data.frame(table(esDF)) esDFtable <- esDFtable[order(esDFtable$b003501), ] expect_equal(nrow(es0$data), nrow(expand.grid(levels(esDF$m815401), levels(esDF$b003501)))) expect_equal(es0$data$N, esDFtable$Freq) expect_equal(capture.output(es0), estwith0REF) expect_warning(es1 <- edsurveyTable(~ b003501 + m815401, data = sdf, dropOmittedLevels = FALSE, pctAggregationLevel = 0)) expect_equal(nrow(es1$data), nrow(esDFtable)) }) context("edsurveyTable with no rhs variable") test_that("edsurveyTable with no rhs variable", { skip_on_cran() es <- edsurveyTable(composite ~ 1, data = sdf, returnVarEstInputs = TRUE) esc <- capture.output(es) expect_equal(esc, es_norhsREF) }) context("gap with N=0") test_that("gap with N=0", { skip_on_cran() gap0 <- gap("b003501", data = sdf, groupA = m815401 %in% "Multiple", groupB = "default", dropOmittedLevels = FALSE, targetLevel = "Multiple", returnSimpleDoF = TRUE, returnVarEstInputs = TRUE, returnSimpleN = TRUE ) gap0c <- capture.output(gap0) expect_equal(gap0c, gap0REF) }) context("edsurveyTable2pdf") test_that("edsurveyTable2pdf", { skip_on_cran() est1 <- edsurveyTable(composite ~ dsex + b017451, sdf) expect_equal( capture.output(edsurveyTable2pdf( data = est1, formula = b017451 ~ dsex, toCSV = "", filename = "CONSOLE", returnMeans = FALSE )), pdf_estREF ) }) context("edsurveyTable Taylor") test_that("edsurveyTable Taylor", { skip_on_cran() es1t <- edsurveyTable(composite ~ dsex + b017451, sdf, jrrIMax = 1, varMethod = "Taylor") es1tc <- capture.output(es1t) # compare Taylor to jackknife, only columns that should agree es1j <- edsurveyTable(composite ~ dsex + b017451, sdf, jrrIMax = 1, varMethod = "jackknife") es1t$njk <- NULL es1j$njk <- NULL es1t$varMethod <- NULL es1j$varMethod <- NULL es1j$data["SE(PCT)"] <- NULL es1t$data["SE(PCT)"] <- NULL es1j$data["SE(MEAN)"] <- NULL es1t$data["SE(MEAN)"] <- NULL expect_equal(es1j, es1t) # check Taylor output expect_equal(es1tc, es1tREF) # test unbalanced tables, note some singleton PSUs expect_warning(es3t <- edsurveyTable(composite ~ lep + ell3, sdf, jrrIMax = Inf, varMethod = "Taylor")) es3tc <- capture.output(es3t) expect_equal(es3tc, es3tREF) # test unbalanced tables expect_warning(es4t <- edsurveyTable(composite ~ lep + ell3 + dsex, sdf, jrrIMax = 1, varMethod = "Taylor")) es4tc <- capture.output(es4t) expect_equal(es4tc, es4tREF) # check for just males (dsex is only occupied at one level) sdfm <- subset(sdf, dsex == "Male", verbose = FALSE) es2t <- edsurveyTable(composite ~ dsex + b017451, sdfm, jrrIMax = 1, varMethod = "Taylor") es2tc <- capture.output(es2t) expect_equal(es2tc, es2tREF) }) test_that("variable label stored as attributes", { est1 <- edsurveyTable(composite ~ dsex + b017451, sdf, jrrIMax = 1) expect_equal(attr(est1$data$dsex, "label"), "Gender") expect_equal(attr(est1$data$b017451, "label"), "Talk about studies at home") }) context("showCutPoints agrees") test_that("showCutPoints agrees", { skip_on_cran() sw <- c( "Achievement Levels:", " Mathematics: 262, 299, 333" ) co <- capture.output(showCutPoints(sdf)) expect_equal(sw, co) }) context("updatePlausibleValue") test_that("updatePlausibleValue", { skip_on_cran() lma <- lm.sdf(~dsex, sdf, varMethod = "Taylor") sdfb <- updatePlausibleValue("composite", "newname", sdf) lmb <- lm.sdf(~dsex, sdfb, varMethod = "Taylor") lmb$call <- lma$call <- NULL # the call is different lmb$formula <- lma$formula <- NULL # the formula has the default value substituted in and so is different lmb$data <- lma$data <- NULL expect_equal(lma, lmb) }) context("percentile") test_that("percentile", { skip_on_cran() expect_known_value(pct1 <- percentile("composite", c(0, 1, 25, 50, 75, 99, 100), sdf), "pct1.rds", update = FALSE) # percentiles should be -1* their value when multiplied by -1 and taken in reverse order tmpDat <- getData(data = sdf, varnames = c("composite", "origwt"), addAttributes = TRUE) pvs <- getPlausibleValue(data = sdf, "composite") for (pvi in pvs) { tmpDat[, pvi] <- -1 * tmpDat[, pvi] } pct1i <- percentile("composite", rev(c(0, 1, 25, 50, 75, 99, 100)), data = tmpDat, confInt = FALSE) expect_equal(pct1$estimate, -1 * pct1i$estimate) # range should agree with 0th and 100th percentile pct0 <- percentile("mrpcm1", c(0, 100), data = sdf) expect_equal(pct0$estimate, range(sdf$mrpcm1)) }) ######################## GAP TESTS FAIL ################ context("return VarEstInputs") lm1 <- lm.sdf(~ dsex + b017451, sdf, returnVarEstInputs = TRUE) expect_known_value(lm1$varEstInputs, "lm_varest.rds", update = FALSE) test_that("return VarEstInputs", { skip_on_cran() es1 <- edsurveyTable(composite ~ dsex + b017451, sdf, jrrIMax = 1, returnVarEstInputs = TRUE) expect_known_value(list(es1$meanVarEstInputs, es1$pctVarEstInputs), file = "est_varest.rds", update = FALSE) g1 <- gap("composite", sdf, dsex == "Male", returnVarEstInputs = TRUE) expect_known_value(list(g1$varEstInputs, g1$pctVarEstInputs), file = "gap1_varest.rds", update = FALSE) g2 <- gap("b017451", sdf, dsex == "Male", targetLevel = "Once every few weeks", returnVarEstInputs = TRUE) expect_known_value(list(g2$varEstInputs, g2$pctVarEstInputs), file = "gap2_varest.rds", update = FALSE) g3 <- gap("composite", sdf, dsex == "Male", returnVarEstInputs = TRUE, achievementLevel = c("At or aboVe Bas")) expect_known_value(list(g3$varEstInputs, g3$pctVarEstInputs), file = "gap3_varest.rds", update = FALSE) g3d <- gap("composite", sdf, dsex == "Male", returnVarEstInputs = TRUE, achievementLevel = c("At Basic"), achievementDiscrete = TRUE) expect_known_value(list(g3d$varEstInputs, g3d$pctVarEstInputs), file = "gap3d_varest.rds", update = FALSE) g4 <- gap("composite", sdf, dsex == "Male", percentiles = c(50), returnVarEstInputs = TRUE) expect_known_value(list(g4$varEstInputs, g4$pctVarEstInputs), file = "gap4_varest.rds", update = FALSE) pct1 <- percentile("composite", c(2, 50), sdf, returnVarEstInputs = TRUE) expect_known_value(attributes(pct1)$varEstInputs, file = "pct_varest.rds", update = FALSE) test1 <- achievementLevels(returnCumulative = TRUE, data = sdf, returnVarEstInputs = TRUE) expect_known_value(list(test1$discVarEstInputs, test1$cumVarEstInputs), file = "aLevels_varest.rds", update = FALSE) es1re <- edsurveyTable(composite ~ dsex + b017451, sdf, jrrIMax = 1, returnVarEstInputs = TRUE, recode = list(dsex = list(from = "Male", to = "MALE"))) expect_known_value(list(es1re$meanVarEstInputs, es1re$pctVarEstInputs), file = "est_varest_recode.rds", update = FALSE) # add test per issue 671 glab <- gap("composite", sdf, dsex == "Male", dsex == "Female", achievementLevel = c("below Basic", "At Bas"), achievementDiscrete = TRUE) expect_equal(glab$results$achievementLevel, c("below Basic", "At Basic")) }) context("gap") test_that("gap", { # gap SD expect_known_value(g0 <- gap("composite", sdf, dsex == "Male", dsex == "Female", returnSimpleDoF = TRUE, stDev = TRUE), "gap_main_SD.rds", update = FALSE) # gap means expect_known_value(g1 <- gap("composite", sdf, dsex == "Male", dsex == "Female", returnSimpleDoF = TRUE), "gap_main_mean.rds", update = FALSE) g1q <- gap("composite", sdf, "dsex==\"Male\"", "dsex==\"Female\"", returnSimpleDoF = TRUE) g1q$call <- g1$call # the call is different, so fix that expect_known_value(g1q, "gap_main_mean.rds", update = FALSE) skip_on_cran() # gap percentile expect_known_value(g2p <- gap("composite", sdf, dsex == "Male", dsex == "Female", percentile = c(0, 50, 98), returnSimpleDoF = TRUE), "gap_main_percentile.rds", update = FALSE) g2pq <- gap("composite", sdf, "dsex==\"Male\"", "dsex==\"Female\"", percentile = c(0, 50, 98), returnSimpleDoF = TRUE) g2pq$call <- g2p$call # the call is different, so fix that expect_known_value(g2pq, "gap_main_percentile.rds", update = FALSE) # gap achievement levels, discrete expect_known_value(g1al <- gap("composite", sdf, dsex == "Male", dsex == "Female", achievementLevel = "Prof", achievementDiscrete = TRUE), "gap_AL1.rds", update = FALSE) # check use of achievementLevel in results, that results agree across discrete and cumulative ga1 <- gap("composite", sdf, dsex == "Male", dsex == "Female", achievementLevel = "Advanced") ga2 <- gap("composite", sdf, dsex == "Male", dsex == "Female", achievementLevel = "Adv", achievementDiscrete = TRUE) ga1$call <- NULL ga2$call <- NULL expect_equal(ga1, ga2) expect_equal(ga1$results$achievementLevel, "At Advanced") expect_equal(ga2$results$achievementLevel, "At Advanced") gp1 <- gap("composite", sdf, dsex == "Male", dsex == "Female", achievementLevel = "Proficient") gp2 <- gap("composite", sdf, dsex == "Male", dsex == "Female", achievementLevel = "Prof", achievementDiscrete = TRUE) # cumulative should equal sum of discrete expect_equal(gp2$results$estimateA + ga1$results$estimateA, gp1$results$estimateA) expect_equal(gp2$results$estimateB + ga1$results$estimateB, gp1$results$estimateB) expect_equal(gp1$results$achievementLevel, "At or Above Proficient") expect_equal(gp2$results$achievementLevel, "At Proficient") # and cumulative, with multiple levels expect_known_value(g2al <- gap("composite", sdf, dsex == "Male", dsex == "Female", achievementLevel = c("Proficient", "Basic")), "gap_AL2.rds", update = FALSE) # gap percentage with recode expect_known_value(g1eq <- gap("b017451", sdf, dsex == "Male", dsex == "Female", targetLevel = "Never or hardly ever", returnSimpleDoF = TRUE), "gap_percentage1.rds", update = FALSE) expect_known_value(g2eq <- gap("b017451", sdf, dsex == "Male", dsex == "Female", targetLevel = "Infrequently", recode = list(b017451 = list( from = c( "Never or hardly ever", "Once every few weeks", "About once a week" ), to = c("Infrequently") )), returnSimpleDoF = TRUE ), "gap_percentage2.rds", update = FALSE) skip_on_cran() # Taylor warning expect_warning(gap("composite", sdf, dsex == "Male", dsex == "Female", varMethod = "Taylor"), "deprecated") }) context("achievementLevel basic") test_that("achievementLevel basic", { expect_known_value(test1 <- achievementLevels(returnCumulative = TRUE, data = sdf), file = "aLevels_test1.rds", update = FALSE) }) context("achievementLevel, aggregated") test_that("achievementLevel, aggregated", { skip_on_cran() expect_known_value(test2 <- achievementLevels(aggregateBy = "dsex", returnCumulative = TRUE, data = sdf), file = "aLevels_test2.rds", update = FALSE) # test dynamic vars expect_known_value(test2 <- achievementLevels(aggregateBy = dsex, returnCumulative = TRUE, data = sdf), file = "aLevels_test2.rds", update = FALSE) dsexVar <- "dsex" expect_known_value(test2 <- achievementLevels(aggregateBy = dsexVar, returnCumulative = TRUE, data = sdf), file = "aLevels_test2.rds", update = FALSE) skip_on_cran() # return to achievementLevels expect_known_value(test3 <- achievementLevels(aggregateBy = c("sdracem"), returnCumulative = TRUE, data = sdf), file = "aLevels_test3.rds", update = FALSE) expect_known_value(test4 <- achievementLevels("sdracem", aggregateBy = c("composite"), data = sdf, returnCumulative = TRUE), file = "aLevels_test4.rds", update = FALSE) expect_known_value(test5 <- achievementLevels("dsex", aggregateBy = c("composite"), data = sdf, returnCumulative = TRUE), file = "aLevels_test5.rds", update = FALSE) # Use recode to change values for specified variables: expect_known_value(test6 <- achievementLevels(c("composite", "dsex", "b017451"), aggregateBy = "dsex", sdf, recode = list( b017451 = list( from = c( "Never or hardly ever", "Once every few weeks", "About once a week" ), to = c("Infrequently") ), b017451 = list( from = c("2 or 3 times a week", "Every day"), to = c("Frequently") ) ) ), file = "aLevels_test6.rds", update = FALSE) }) context("achievementLevel many interactions") test_that("achievementLevel many interactions", { skip_on_cran() expect_known_value(test7 <- achievementLevels(c("composite", "ell3", "lep", "pared", "b017451"), data = sdf, returnCumulative = TRUE), file = "aLevels_test7.rds", update = FALSE) # iparse tests for passing different variable names xCols <- c("lep", "pared", "b017451") test7a <- achievementLevels(c("composite", "ell3", xCols), data = sdf, returnCumulative = TRUE) test7b <- achievementLevels(c(composite, ell3, xCols), data = sdf, returnCumulative = TRUE) expect_equal(test7, test7a) expect_equal(test7, test7b) expect_equal(test7a, test7b) }) context("achievementLevel with result of zero") test_that("achievementLevel with result of zero", { sdfC <- subset(sdf, scrpsu %in% 100:200) expect_known_value(test9 <- achievementLevels(data = subset(sdfC, pared == 1)), file = "aLevels_test9.rds", update = FALSE) }) # tests based on sdf context("Test correlations on SDF") test_that("sdf correlation", { suppressMessages(expect_is(expect_c1_pear <- cor.sdf("b017451", "b003501", sdf, method = "Pearson", weightVar = "origwt"), "edsurveyCor")) skip_on_cran() expect_is(c1_spear <- cor.sdf("b017451", "b003501", sdf, method = "Spearman", weightVar = "origwt"), "edsurveyCor") # use dynamic variables assign(x = "b17", value = c("b017451"), envir = globalenv()) assign(x = "b35", value = c("b003501"), envir = globalenv()) expect_is(c1_polyc <- cor.sdf(b17, b35, sdf, method = "Polychoric", weightVar = "origwt"), "edsurveyCor") # takes awhile rm("b17", envir = globalenv()) rm("b35", envir = globalenv()) expect_is(c1_polycB <- cor.sdf(b017451, b003501, sdf, method = "Polychoric", weightVar = "origwt"), "edsurveyCor") # takes awhile expect_equal(c1_polyc, c1_polycB) sdf_dnf <- EdSurvey:::subset(sdf, b003601 == 1, verbose = FALSE) suppressMessages(expect_is(c2_pear <- cor.sdf("composite", "b017451", sdf_dnf, method = "Pearson", weightVar = "origwt"), "edsurveyCor")) expect_is(c2_spear <- cor.sdf("composite", "b017451", sdf_dnf, method = "Spearman", weightVar = "origwt"), "edsurveyCor") expect_is(c2_polys <- cor.sdf("composite", "b017451", sdf_dnf, method = "Polyserial", weightVar = "origwt"), "edsurveyCor") }) context("In cor, variables as class character return errors") test_that("In cor, variables as class", { skip_on_cran() df <- getData(sdf, c("b017451", "sdracem", "origwt"), addAttributes = TRUE) df$sdracem <- as.character(df$sdracem) expect_error(cor.sdf("b017451", "sdracem", df, method = "Pearson")) }) context("Reordering a variable manually vs through cor.sdf") test_that("Reordering a variable manually vs through cor.sdf", { skip_on_cran() gddat <- getData(sdf, c("b017451", "sdracem", "origwt"), addAttributes = TRUE) # cast sdracem as a character and then reorder based on that gddat$sdracem <- lfactor(as.character(gddat$sdracem), levels = c(1, 2, 3, 4, 5, 6), labels = c("White", "Hispanic", "Black", "Asian/Pacific Island", "Amer Ind/Alaska Natv", "Other")) cor3 <- cor.sdf("b017451", "sdracem", sdf, method = "Pearson", weightVar = "origwt", reorder = list(sdracem = c("White", "Hispanic", "Black", "Asian/Pacific Island", "Amer Ind/Alaska Natv", "Other"))) cor4 <- cor.sdf("b017451", "sdracem", gddat, method = "Pearson", weightVar = "origwt") expect_equal(cor3, cor4) gddat$sdracem[gddat$sdracem == "Hispanic"] <- "White" gddat$sdracem <- factor(gddat$sdracem, levels = c("White", "Black", "Asian/Pacific Island", "Amer Ind/Alaska Natv", "Other")) cor1Pe <- cor.sdf("b017451", "sdracem", sdf, method = "Pearson", weightVar = "origwt", recode = list(sdracem = list(from = "Hispanic", to = "White"))) cor2Pe <- cor.sdf("b017451", "sdracem", gddat, method = "Pearson", weightVar = "origwt") expect_equal(cor1Pe, cor2Pe) # here lfacor not condensed cor3Pe <- cor.sdf("b017451", "sdracem", sdf, method = "Pearson", weightVar = "origwt", recode = list(sdracem = list(from = "Hispanic", to = "White")), condenseLevels = FALSE) expect_equal(cor3Pe$correlation, -0.00299202137069835) # cor4Pe <- cor.sdf("b017451", "sdracem", gddat, method = "Pearson", weightVar = "origwt", condenseLevels = FALSE) expect_equal(cor4Pe$correlation, -0.00232480033396954) cor1Sp <- cor.sdf("b017451", "sdracem", sdf, method = "Spearman", weightVar = "origwt", recode = list(sdracem = list(from = "Hispanic", to = "White"))) cor2Sp <- cor.sdf("b017451", "sdracem", gddat, method = "Spearman", weightVar = "origwt") expect_equal(cor1Sp, cor2Sp) cor1pc <- cor.sdf("b017451", "sdracem", sdf, method = "Polychoric", weightVar = "origwt", recode = list(sdracem = list(from = "Hispanic", to = "White"))) cor2pc <- cor.sdf("b017451", "sdracem", gddat, method = "Polychoric", weightVar = "origwt") expect_equal(cor1pc, cor2pc) sdf_dnf <- EdSurvey:::subset(sdf, sdracem == 5 | sdracem == 3 | sdracem == 1, verbose = FALSE) cc1_pear <- cor.sdf("b017451", "sdracem", sdf_dnf, method = "Pearson", weightVar = "origwt", recode = list(sdracem = list(from = 3, to = 1))) cc2_pear <- cor.sdf("b017451", "sdracem", sdf_dnf, method = "Pearson", weightVar = "origwt", recode = list(sdracem = list(from = "Hispanic", to = "White"))) expect_equal(cc1_pear, cc2_pear) cc1_spear <- cor.sdf("b017451", "sdracem", sdf_dnf, method = "Spearman", weightVar = "origwt", recode = list(sdracem = list(from = 3, to = 1))) cc2_spear <- cor.sdf("b017451", "sdracem", sdf_dnf, method = "Spearman", weightVar = "origwt", recode = list(sdracem = list(from = "Hispanic", to = "White"))) expect_equal(cc1_spear, cc2_spear) cc1_polyc <- cor.sdf("b017451", "sdracem", sdf_dnf, method = "Polychoric", weightVar = "origwt", recode = list(sdracem = list(from = 3, to = 1))) cc2_polyc <- cor.sdf("b017451", "sdracem", sdf_dnf, method = "Polychoric", weightVar = "origwt", recode = list(sdracem = list(from = "Hispanic", to = "White"))) expect_equal(cc1_polyc, cc2_polyc) }) context("cor.sdf no level condensation") test_that("cor.sdf no level condensation", { skip_on_cran() cor_nocondense <- cor.sdf(x = "c046501", y = "c044006", data = sdf, condenseLevels = FALSE) withr::with_options( list(digits = 4), cor_nocondenseC <- capture.output(cor_nocondense) ) expect_equal(cor_nocondenseC, cor_nocondenseREF) }) context("unweighted cor") test_that("unweighted cor", { skip_on_cran() b1a <- cor.sdf("m815401", "b017451", method = "Pearson", sdf, weightVar = "origwt") b1b <- cor.sdf("m815401", "b017451", method = "Pearson", sdf, weightVar = NULL) # not actually equal, just approximate expect_equal(b1a$correlation, b1b$correlation, tolerance = 0.02, scale = 1) b2a <- cor.sdf("m815401", "b017451", method = "Spearman", sdf, weightVar = "origwt") b2b <- cor.sdf("m815401", "b017451", method = "Spearman", sdf, weightVar = NULL) # not actually equal, just approximate expect_equal(b2a$correlation, b2b$correlation, tolerance = 0.02, scale = 1) }) context("glm") test_that("glm", { skip_on_cran() # data to test against logitDat <- getData(data = sdf, varnames = c("iep", "b017451", "dsex", "b013801", "origwt", "composite", "geometry"), dropOmittedLevels = FALSE, addAttributes = TRUE) # test logit with no PVs logit0 <- logit.sdf(I(iep %in% "Yes") ~ dsex + b013801, data = sdf) # run just coef logitDat0 <- getData(data = logitDat, varnames = c("iep", "dsex", "b013801", "origwt"), dropOmittedLevels = TRUE) logitDat0$iepY <- ifelse(logitDat0$iep %in% "Yes", 1, 0) suppressWarnings(ccoef <- coef(glm.sdf(iepY ~ dsex + b013801, data = logitDat0, weightVar = "origwt", family = binomial(link = "logit")))) expect_equal(coef(logit0), ccoef) logit1 <- logit.sdf(I(composite > 300) ~ dsex + b013801, data = sdf) logitDat1 <- getData(data = logitDat, varnames = c("composite", "dsex", "b013801", "origwt"), dropOmittedLevels = TRUE) ccoef <- sapply(getPlausibleValue("composite", sdf), function(ci) { logitDat1$outcome <- ifelse(logitDat1[, ci] > 300, 1, 0) suppressWarnings(coef(glm.sdf(outcome ~ dsex + b013801, data = logitDat1, weightVar = "origwt", family = binomial(link = "logit")))) }) ccoef <- apply(ccoef, 1, mean) expect_equal(coef(logit1), ccoef, tolerance = 1E-6) # test logit with PVs, multiple tests on that PV logit1b <- logit.sdf(I(composite > 300 & composite < 350) ~ dsex + b013801, data = sdf) ccoef <- sapply(getPlausibleValue("composite", sdf), function(ci) { logitDat1$outcome <- ifelse(logitDat1[, ci] > 300 & logitDat1[, ci] < 350, 1, 0) suppressWarnings(coef(glm.sdf(outcome ~ dsex + b013801, data = logitDat1, weightVar = "origwt", family = binomial(link = "logit")))) }) ccoef <- apply(ccoef, 1, mean) expect_equal(coef(logit1b), ccoef, tolerance = 1E-6) # two survey items logit2 <- logit.sdf(I(iep %in% "Yes" & b017451 %in% "Every day") ~ dsex + b013801, data = sdf) logitDat2 <- getData(data = logitDat, varnames = c("iep", "b017451", "dsex", "b013801", "origwt"), dropOmittedLevels = TRUE) logitDat2$outcome <- ifelse(logitDat2$iep %in% "Yes" & logitDat2$b017451 %in% "Every day", 1, 0) suppressWarnings(ccoef <- coef(glm.sdf(outcome ~ dsex + b013801, data = logitDat2, weightVar = "origwt", family = binomial(link = "logit")))) expect_equal(coef(logit2), ccoef, tolerance = 1E-6) # a PV with a relation and a survey item logit3 <- logit.sdf(I(composite > 300 & b017451 %in% "Every day") ~ dsex + b013801, data = sdf) logitDat3 <- getData(data = logitDat, varnames = c("composite", "dsex", "b017451", "b013801", "origwt"), dropOmittedLevels = TRUE) ccoef <- sapply(getPlausibleValue("composite", sdf), function(ci) { logitDat3$outcome <- ifelse(logitDat3[, ci] > 300 & logitDat3$b017451 %in% "Every day", 1, 0) suppressWarnings(coef(glm.sdf(outcome ~ dsex + b013801, data = logitDat3, weightVar = "origwt", family = binomial(link = "logit")))) }) ccoef <- apply(ccoef, 1, mean) expect_equal(coef(logit3), ccoef, tolerance = 1E-6) # a relation between two PVs logit4 <- logit.sdf(I(composite > geometry) ~ dsex + b013801, data = sdf) logitDat4 <- getData(data = logitDat, varnames = c("composite", "geometry", "dsex", "b013801", "origwt"), dropOmittedLevels = TRUE) ccoef <- sapply(1:5, function(ii) { ci <- getPlausibleValue("composite", sdf)[ii] gi <- getPlausibleValue("geometry", sdf)[ii] logitDat4$outcome <- ifelse(logitDat4[, ci] > logitDat4[, gi], 1, 0) suppressWarnings(coef(glm.sdf(outcome ~ dsex + b013801, data = logitDat4, weightVar = "origwt", family = binomial(link = "logit")))) }) ccoef <- apply(ccoef, 1, mean) expect_equal(coef(logit4), ccoef, tolerance = 1E-6) # two PVs with seperate relations logit4b <- logit.sdf(I(composite > 300 & geometry < 350) ~ dsex + b013801, data = sdf) ccoef <- sapply(1:5, function(ii) { ci <- getPlausibleValue("composite", sdf)[ii] gi <- getPlausibleValue("geometry", sdf)[ii] logitDat4$outcome <- ifelse(logitDat4[, ci] > 300 & logitDat4[, gi] < 350, 1, 0) suppressWarnings(coef(glm.sdf(outcome ~ dsex + b013801, data = logitDat4, weightVar = "origwt", family = binomial(link = "logit")))) }) ccoef <- apply(ccoef, 1, mean) expect_equal(coef(logit4b), ccoef, tolerance = 1E-6) skip_on_cran() # test logit with PVs withr::with_options( list(digits = 4), co <- capture.output(summary(logit1)) ) expect_equal(co, logit1REF) logit2t <- logit.sdf(I(iep %in% "Yes" & b017451 %in% "Every day") ~ dsex + b013801, data = sdf, varMethod = "Taylor") co <- capture.output(summary(logit2t)) expect_equal(co, logit2tREF) }) context("Wald test") test_that("Wald test", { # glm example skip_on_cran() myLogit <- logit.sdf(dsex ~ b017451 + b003501, data = sdf, returnNumberOfPSU = TRUE) wt_glm <- waldTest(model = myLogit, coefficients = 2:5) wt1 <- capture.output(wt_glm) expect_equal(wt1, wt1REF) # lm example fit <- lm.sdf(composite ~ dsex + b017451, data = sdf, returnNumberOfPSU = TRUE) wt_lm <- waldTest(model = fit, coefficients = "b017451") wt2 <- capture.output(wt_lm) expect_equal(wt2, wt2REF) # test weightVar with iparse (remove call as they won't match, but numbers will) fita <- lm.sdf(composite ~ dsex + b017451, data = sdf, weightVar = "origwt", returnNumberOfPSU = TRUE) fitb <- lm.sdf(composite ~ dsex + b017451, data = sdf, weightVar = origwt, returnNumberOfPSU = TRUE) fit$call <- NULL fita$call <- NULL fitb$call <- NULL expect_equal(fit, fita) # compare to original expect_equal(fit, fitb) expect_equal(fita, fitb) # compare to each other # lm example with Taylor fit <- lm.sdf(composite ~ dsex + b017451, data = sdf, varMethod = "Taylor", returnNumberOfPSU = TRUE) wt_lm <- waldTest(model = fit, coefficients = "b017451") wt3 <- capture.output(wt_lm) expect_equal(wt3, wt3REF) # lesdf example should return warning for waldTest because strata and PSU vars needed # used to be an error, but chi-sq is still possible, so now warning gddat <- getData( data = sdf, varnames = c("composite", "dsex", "b017451", "b003501", "origwt"), addAttributes = TRUE ) myLogit2 <- logit.sdf(dsex ~ b017451 + b003501, data = gddat, returnVarEstInputs = TRUE) expect_warning(waldTest(myLogit2, coefficients = 2:5)) # lesdf this example should work, including the PSU and stratum vars gddat <- getData( data = sdf, varnames = c("composite", "dsex", "b017451", "b003501", "origwt", getPSUVar(sdf), getStratumVar(sdf)), addAttributes = TRUE ) myLogit <- logit.sdf(dsex ~ b017451 + b003501, data = gddat, returnVarEstInputs = TRUE) wt_lesdf <- waldTest(myLogit, coefficients = 2:5) wt4 <- capture.output(wt_lesdf) expect_equal(wt4, wt4REF) }) context("edsurvey with $ method") test_that("edsurvey with $ method", { # $ method work for existing attributes expect_equal(sdf$country, "USA") # $ method return a vector expect_equal(class(sdf$dsex), c("lfactor", "factor")) # that vector has data dsexTab <- structure(c(Male = 8486L, Female = 8429L), .Dim = 2L, .Dimnames = structure(list(c("Male", "Female")), .Names = ""), class = "table" ) expect_equal(table(sdf$dsex), dsexTab) # $ method return a data.frame expect_equal(class(sdf$composite), "data.frame") }) context("levelsSDF n") test_that("levelsSDF n", { skip_on_cran() levelRes <- levelsSDF(varnames = "pared", data = sdf) sum2Res <- summary2(sdf, "pared") mergeRes <- merge(sum2Res$summary, levelRes$pared, by.x = "pared", by.y = "labels") expect_equal(mergeRes$N, mergeRes$n) sum2ResB <- summary2(sdf, c("dsex", "pared")) withr::with_options( list(digits = 2), co <- capture.output(sum2ResB) ) expect_equal(co, sum2ResBREF) }) context("levelsSDF with multiple recodes") test_that("levelsSDF with multiple recodes", { skip_on_cran() # $ method work for existing attributes df <- recode.sdf(sdf, recode = list( t088301 = list( from = c("Yes, available", "Yes, I have access"), to = c("Yes") ), t088301 = list( from = c("No, have no access"), to = c("No") ) )) df <- recode.sdf(df, recode = list(pared = list( from = c("Did not finish H.S.", "Graduated H.S."), to = c("Graduated High School") ))) levelsSDFoutput <- c( "Levels for Variable 't088301' (Lowest level first):", " 8. Omitted* (n = 84)", " 0. Multiple* (n = 1)", " 9. Yes (n = 14683)", " 10. No (n = 323)", " NOTE: * indicates an omitted level." ) colsdf <- capture.output(levelsSDF("t088301", df)) expect_equal(levelsSDFoutput, colsdf) }) context("use returnNumberOfPSU") test_that("use returnNumberOfPSU", { skip_on_cran() # percentile pctPSU <- percentile("composite", percentiles = c(10, 50), data = sdf, returnNumberOfPSU = TRUE) expect_equal(attr(pctPSU, "nPSU"), 124) # lm.sdf lmPSU <- lm.sdf(composite ~ dsex, data = sdf, returnNumberOfPSU = TRUE) expect_equal(lmPSU$nPSU, 124) # gap gapPSU <- gap("composite", data = sdf, groupA = dsex %in% "Male", groupB = dsex %in% "Female", returnNumberOfPSU = TRUE) expect_equal(capture.output(gapPSU), gapPSUREF) }) context("summary2") test_that("summary2", { # Weighted with PV skip_on_cran() sPV_w <- capture.output(summary2(sdf, c("composite", "algebra"))) expect_equal(sPV_w, sPV_wREF) # Unweighted sPV <- capture.output(summary2(sdf, "composite", weightVar = NULL)) expect_equal(sPV, sPVREF) # Weighted discrete withr::with_options( list(digits = 2), sDiscrete_w <- capture.output(summary2(sdf, c("b017451", "dsex"))) ) expect_equal(sDiscrete_w, sDiscrete_wREF) # Unweighted discrete withr::with_options( list(digits = 4), sDiscrete <- capture.output(summary2(sdf, "dsex", weightVar = NULL)) ) expect_equal(sDiscrete, sDiscreteREF) }) context("rq.sdf") test_that("rq.sdf", { skip_on_cran() options(width = 500) rq1 <- rq.sdf(composite ~ dsex + b017451, data = sdf, tau = 0.8) rq1c <- withr::with_options(list(digits = 2), capture.output(summary(rq1))) expect_equal(rq1c, rq1REF) }) context("mml.sdf") test_that("mml.sdf", { skip_on_cran() # run subtest invisible(withr::with_options( list(digits = 4), capture.output( mmlNAEP <- suppressWarnings(mml.sdf(algebra ~ 1, subset(sdf, dsex == "Female"), weightVar = "origwt", verbose = TRUE)) ) )) # capture output # intercept coInt <- withr::with_options(list(digits = 4), capture.output(mmlNAEP)) expect_equal(coInt, mmlIntREF) # summary coSum <- withr::with_options( list(digits = 4), capture.output(summary(mmlNAEP)) ) # don't compare the 'iterations = ##' value, remove that from the comparison expect_equal(dropIterations(coSum), dropIterations(mmlSumREF)) # ensure all test names match pvvar names and vis-versa testNames <- c(sdf$testData$subtest, sdf$testData$test) pvs <- names(sdf$pvvars) expect_true(all(pvs %in% testNames) && all(testNames %in% pvs)) skip_on_cran() # test with a fixed up pvvar name invisible(withr::with_options( list(digits = 4), co <- capture.output( suppressWarnings( mml.sdf(data_anal_prob ~ 1, sdf, weightVar = "origwt", verbose = TRUE) ) ) )) coREF <- c( " (Intercept) Population SD ", " 279.84 40.98 " ) expect_equal(co, coREF) # run with regressor invisible(withr::with_options( list(digits = 4), capture.output( mmlDsexNaep <- suppressWarnings(mml.sdf(algebra ~ dsex, sdf, weightVar = "origwt", verbose = TRUE)) ) )) # capture output # intercept coDsexInt <- withr::with_options( list(digits = 2), capture.output(mmlDsexNaep) ) expect_equal(coDsexInt, mmlDsexIntREF) }) context("no PSU var error and warnings") test_that("no PSU var error and warnings", { skip_on_cran() # these warnings relatete to missing PSU so the count of PSUs will not be returned or # errors about how Taylor series is not possible without a PSU var expect_warning( sdfNoPSU <- edsurvey.data.frame( userConditions = sdf$userConditions, defaultConditions = sdf$defaultConditions, dataList = sdf$dataList, weights = sdf$weights, pvvars = sdf$pvvars, subject = sdf$subject, year = sdf$year, assessmentCode = sdf$assessmentCode, dataType = sdf$dataType, gradeLevel = sdf$gradeLevel, achievementLevels = sdf$achievementLevels, omittedLevels = sdf$omittedLevels, survey = sdf$survey, country = sdf$country, psuVar = NULL, # remove the PSU var for testing stratumVar = NULL, # remove the stratum var for testing jkSumMultiplier = sdf$jkSumMultiplier, recodes = sdf$recodes, validateFactorLabels = sdf$validateFactorLabels, forceLower = TRUE, reqDecimalConversion = sdf$reqDecimalConversion, fr2Path = sdf$fr2Path, dim0 = sdf$dim0 ), "Taylor series" ) expect_warning(rq1 <- rq.sdf(composite ~ dsex + b017451, data = sdfNoPSU, tau = 0.8, returnNumberOfPSU = TRUE), "returnNumberOfPSU") expect_error(res <- edsurveyTable(composite ~ dsex, data = sdfNoPSU, varMethod = "Taylor"), "jackknife") expect_error(res <- glm.sdf(composite ~ dsex, data = sdfNoPSU, varMethod = "Taylor", family = binomial()), "primary sampling unit") expect_warning(res <- glm.sdf(composite ~ dsex, data = sdfNoPSU, family = binomial(), returnNumberOfPSU = TRUE), "FALSE") expect_warning(res <- lm.sdf(composite ~ dsex, data = sdfNoPSU, returnNumberOfPSU = TRUE), "FALSE") expect_error(res <- lm.sdf(composite ~ dsex, data = sdfNoPSU, varMethod = "Taylor"), "jackknife") expect_error(res <- lm.sdf(composite ~ dsex, data = sdfNoPSU, varMethod = "T", returnNumberOfPSU = TRUE), "jackknife") })