context('plsi.lr.v1 - PLSI linear regression version 1') test_that('Output of plsi.lr.v1', { data(nhanes.new) dat <- nhanes.new Y.name <- "log.triglyceride" X.name <- c("X1_trans.b.carotene", "X2_retinol", "X3_g.tocopherol", "X4_a.tocopherol", "X5_PCB99", "X6_PCB156", "X7_PCB206", "X8_3.3.4.4.5.pncb", "X9_1.2.3.4.7.8.hxcdf", "X10_2.3.4.6.7.8.hxcdf") Z.name <- c("AGE.c", "SEX.Female", "RACE.NH.Black", "RACE.MexicanAmerican", "RACE.OtherRace", "RACE.Hispanic" ) spline.num = 5 spline.degree = 3 initial.random.num = 1 # only for test, set any number set.seed(2023) model_1 <- plsi.lr.v1(data = dat, Y.name = Y.name, X.name = X.name, Z.name = Z.name, spline.num, spline.degree, initial.random.num) expect_true(is.list(model_1)) expect_true(is.data.frame(model_1$si.coefficient)) expect_true(is.data.frame(model_1$confounder.coefficient)) expect_true(is.data.frame(model_1$si.fun)) expect_equal(nrow(model_1$si.coefficient), ncol(model_1$original.data$x)) expect_equal(nrow(model_1$confounder.coefficient), ncol(model_1$original.data$z)) })