if (interactive()) { set.seed(265508) n_cores <- 1L n_row <- 100L n_col <- 11L n_tot <- n_row * n_col X1 <- as.data.frame( array( data = rbinom(n = n_tot, size = 1, prob = runif(n = n_tot)), dim = c(n_row, n_col) ) ) Y1 <- rnorm( n = n_row, mean = 1 + 0.7 * (X1$V1 * X1$V4) + 0.8896846 * (X1$V8 * X1$V11) + 1.434573 * (X1$V5 * X1$V9), sd = 1 ) X1$Y1 <- Y1 # specify the initial formula formula1 <- as.formula( paste( colnames(X1)[n_col + 1L], "~ 1 +", paste0(colnames(X1)[-c(n_col + 1L)], collapse = "+") ) ) data.example <- as.data.frame(X1) # run the inference with robust g prior res4G <- EMJMCMC::LogicRegr( formula = formula1, data = data.example, family = "Gaussian", prior = "G", report.level = 0.5, d = 15, cmax = 2, kmax = 15, p.and = 0.9, p.not = 0.01, p.surv = 0.2, ncores = n_cores, print.freq = 0L ) # run the inference with Jeffrey's prior res4J <- EMJMCMC::LogicRegr( formula = formula1, data = data.example, family = "Gaussian", prior = "J", report.level = 0.5, d = 15, cmax = 2, kmax = 15, p.and = 0.9, p.not = 0.01, p.surv = 0.2, ncores = n_cores, print.freq = 0L ) test_that("LogicRegr output matches version 1.4.3", { obs_4G <- as.numeric(res4G$feat.stat[, 2]) obs_4J <- as.numeric(res4J$feat.stat[, 2]) expect_equal(ncol(res4G$feat.stat), 2L) expect_equal(ncol(res4G$feat.stat), 2L) expect_true(all(obs_4G >= 0) && all(obs_4G <= 1)) expect_true(all(obs_4J >= 0) && all(obs_4J <= 1)) }) }