dGNG <- design(Rlevels = c("left","right"), factors=list(subjects=1,S=c("left","right")), functions=list( TIMEOUT=function(d)rep(2.5,nrow(d)), Rnogo=function(d)factor(rep("left",nrow(d)),levels=c("left","right")), # no go response level Rgo=function(d)factor(rep("right",nrow(d)),levels=c("left","right"))), # go response level formula=list(v~S,a~1, Z~1, t0~1), model=DDMGNG) p_vector <- sampled_pars(dGNG,doMap=F) p_vector[1:5] <- c(0,1,log(1),qnorm(.5),log(.4)) RNGkind("L'Ecuyer-CMRG") set.seed(123) sdat <- make_data(p_vector,dGNG,n_trials=10) emc <- make_emc(sdat,dGNG,type="single", compress = FALSE, n_chains = 1) test_that("DDMGNG", { expect_snapshot(init_chains(emc, particles = 10, cores_per_chain = 1)[[1]]$samples) expect_snapshot(make_data(p_vector,dGNG,n_trials=10)) }) dprobit <- design(Rlevels = c("left","right"), factors=list(subjects=1,S=c("left","right")), formula=list(mean ~ 0+S, sd ~ 1,threshold ~ 1), matchfun=function(d)d$S==d$lR, constants=c(sd=log(1),threshold=0), model=SDT) p_vector <- sampled_pars(dprobit,doMap=F) p_vector[1:2] <- c(-1,1) sdat <- make_data(p_vector,dprobit,n_trials=10) emc <- make_emc(sdat,dprobit,type="single", compress = F, n_chains = 1) test_that("probit", { expect_snapshot(init_chains(emc, particles = 10, cores_per_chain = 1)[[1]]$samples) expect_snapshot(make_data(p_vector,dprobit,n_trials=10)) })