RNGkind("L'Ecuyer-CMRG") set.seed(123) matchfun <- function(d) as.numeric(d$S)==as.numeric(d$lR) | (d$lR=="pm" & as.numeric(d$S)>2) designLBA <- design( factors=list(subjects=1,S=c("left","right","leftpm","rightpm"),RACE=2:3), Rlevels=c("left","right","pm"), matchfun=matchfun, model=LBA,constants=c(v_RACE3=0), formula=list(v~RACE*lM,B~1,t0~1,A~1), ) p_vector <- sampled_pars(designLBA,doMap = FALSE) p_vector[1:length(p_vector)] <- c(log(2), log(4), log(1), log(2), log(0.2),log(.5)) # Make square data so can remove pm in RACE = 2 template <- make_data(p_vector,designLBA,n_trials=10) template <- template[!(template$RACE==2 & (template$S %in% c("leftpm","rightpm"))),] dat <- make_data(p_vector,designLBA,data=template) emc <- make_emc(dat, designLBA, type = "single", compress = F) test_that("RACE", { expect_snapshot(init_chains(emc, particles = 10, cores_for_chains = 1)) })