ML_test <- .ML(test_models$baseline$cormat, n_factors = 3, N = 500, start_method = "factanal") ML_test_2 <- .ML(test_models$baseline$cormat, n_factors = 3, N = 500, start_method = "psych") test_that("output class and dimensions are correct", { expect_is(ML_test$unrot_loadings, "LOADINGS") expect_output(str(ML_test), "List of 10") expect_is(ML_test_2$unrot_loadings, "LOADINGS") expect_output(str(ML_test_2), "List of 10") }) test_that("outputs are correct", { expect_equal(ML_test$orig_R, test_models$baseline$cormat) expect_equal(sum(ML_test$orig_eigen), ncol(test_models$baseline$cormat)) expect_lt(sum(ML_test$final_eigen), ncol(test_models$baseline$cormat)) expect_equal(ML_test$convergence, 0) expect_equal(ML_test_2$orig_R, test_models$baseline$cormat) expect_equal(sum(ML_test_2$orig_eigen), ncol(test_models$baseline$cormat)) expect_lt(sum(ML_test_2$final_eigen), ncol(test_models$baseline$cormat)) expect_equal(ML_test_2$convergence, 0) }) test_that("fit indices are returned correctly", { expect_output(str(ML_test$fit_indices), "List of 14") expect_is(ML_test$fit_indices$chi, "numeric") expect_is(ML_test$fit_indices$df, "numeric") expect_is(ML_test$fit_indices$p_chi, "numeric") expect_is(ML_test$fit_indices$CAF, "numeric") expect_is(ML_test$fit_indices$CFI, "numeric") expect_is(ML_test$fit_indices$RMSEA, "numeric") expect_is(ML_test$fit_indices$RMSEA_LB, "numeric") expect_is(ML_test$fit_indices$RMSEA_UB, "numeric") expect_is(ML_test$fit_indices$AIC, "numeric") expect_is(ML_test$fit_indices$BIC, "numeric") expect_is(ML_test$fit_indices$Fm, "numeric") expect_is(ML_test$fit_indices$chi_null, "numeric") expect_is(ML_test$fit_indices$df_null, "numeric") expect_is(ML_test$fit_indices$p_null, "numeric") expect_is(ML_test_2$fit_indices$chi, "numeric") expect_is(ML_test_2$fit_indices$df, "numeric") expect_is(ML_test_2$fit_indices$p_chi, "numeric") expect_is(ML_test_2$fit_indices$CAF, "numeric") expect_is(ML_test_2$fit_indices$CFI, "numeric") expect_is(ML_test_2$fit_indices$RMSEA, "numeric") expect_is(ML_test_2$fit_indices$RMSEA_LB, "numeric") expect_is(ML_test_2$fit_indices$RMSEA_UB, "numeric") expect_is(ML_test_2$fit_indices$AIC, "numeric") expect_is(ML_test_2$fit_indices$BIC, "numeric") expect_is(ML_test_2$fit_indices$Fm, "numeric") expect_is(ML_test_2$fit_indices$chi_null, "numeric") expect_is(ML_test_2$fit_indices$df_null, "numeric") expect_is(ML_test_2$fit_indices$p_null, "numeric") }) test_that("settings are returned correctly", { expect_named(ML_test$settings, c("start_method")) expect_equal(ML_test$settings$start_method, "factanal") expect_named(ML_test_2$settings, c("start_method")) expect_equal(ML_test_2$settings$start_method, "psych") }) rm(ML_test, ML_test_2)