test_that("tableIndication works", { targetCohortName <- dplyr::tibble( cohort_definition_id = c(1, 1, 1, 2), subject_id = c(1, 1, 2, 3), cohort_start_date = as.Date(c( "2020-01-01", "2020-06-01", "2020-01-02", "2020-01-01" )), cohort_end_date = as.Date(c( "2020-04-01", "2020-08-01", "2020-02-02", "2020-03-01" )) ) indicationCohortName <- dplyr::tibble( cohort_definition_id = c(1, 1, 2, 1), subject_id = c(1, 3, 1, 1), cohort_start_date = as.Date(c( "2019-12-30", "2020-01-01", "2020-05-25", "2020-05-25" )), cohort_end_date = as.Date(c( "2019-12-30", "2020-01-01", "2020-05-25", "2020-05-25" )) ) attr(indicationCohortName, "cohort_set") <- dplyr::tibble( cohort_definition_id = c(1, 2), cohort_name = c("asthma", "covid") ) condition_occurrence <- dplyr::tibble( person_id = 1, condition_start_date = as.Date("2020-05-31"), condition_end_date = as.Date("2020-05-31"), condition_occurrence_id = 1, condition_concept_id = 0, condition_type_concept_id = 0 ) observationPeriod <- dplyr::tibble( observation_period_id = c(1, 2, 3), person_id = c(1, 2, 3), observation_period_start_date = as.Date(c( "2015-01-01", "2016-05-15", "2012-12-30" )), observation_period_end_date = as.Date(c( "2025-01-01", "2026-05-15", "2030-12-30" )), period_type_concept_id = 44814724 ) cdm <- mockDrugUtilisation( con = connection(), writeSchema = schema(), cohort1 = targetCohortName, cohort2 = indicationCohortName, condition_occurrence = condition_occurrence, observation_period = observationPeriod ) result <- cdm[["cohort1"]] |> summariseIndication( indicationCohortName = "cohort2", indicationWindow = list(c(0,0),c(-7,0),c(-30,0),c(-Inf,0)), unknownIndicationTable = "condition_occurrence" ) # default default <- tableIndication(result) expect_true("gt_tbl" %in% class(default)) expect_true(all(sort(colnames(default$`_data`)) == sort(c( 'Database name', 'Variable name', 'Indication', '[header]Cohort name\n[header_level]Cohort 1', '[header]Cohort name\n[header_level]Cohort 2' )))) expect_true(all(default$`_data`$`Database name` == c( 'DUS MOCK', '', '', '', '', 'DUS MOCK', '', '', '', '', 'DUS MOCK', '', '', '', '', 'DUS MOCK', '', '', '', '' ))) tib <- tableIndication(result, header = "variable", groupColumn = "cdm_name", type = "tibble") expect_true(nrow(tib) == 2) expect_true(all(c( 'Database name', 'Cohort name', '[header_level]Indication on index date\n[header_level]Asthma', '[header_level]Indication on index date\n[header_level]Covid', '[header_level]Indication on index date\n[header_level]Asthma and covid', '[header_level]Indication on index date\n[header_level]Unknown', '[header_level]Indication on index date\n[header_level]None', '[header_level]Indication from 7 days before to the index date\n[header_level]Asthma', '[header_level]Indication from 7 days before to the index date\n[header_level]Covid', '[header_level]Indication from 7 days before to the index date\n[header_level]Asthma and covid', '[header_level]Indication from 7 days before to the index date\n[header_level]Unknown', '[header_level]Indication from 7 days before to the index date\n[header_level]None', '[header_level]Indication from 30 days before to the index date\n[header_level]Asthma', '[header_level]Indication from 30 days before to the index date\n[header_level]Covid', '[header_level]Indication from 30 days before to the index date\n[header_level]Asthma and covid', '[header_level]Indication from 30 days before to the index date\n[header_level]Unknown', '[header_level]Indication from 30 days before to the index date\n[header_level]None', '[header_level]Indication any time before or on index date\n[header_level]Asthma', '[header_level]Indication any time before or on index date\n[header_level]Covid', '[header_level]Indication any time before or on index date\n[header_level]Asthma and covid', '[header_level]Indication any time before or on index date\n[header_level]Unknown', '[header_level]Indication any time before or on index date\n[header_level]None' ) %in% colnames(tib))) # strata result <- cdm[["cohort1"]] |> dplyr::filter(cohort_definition_id == 1) |> PatientProfiles::addAge( ageGroup = list("<40" = c(0, 39), ">=40" = c(40, 150)) ) |> PatientProfiles::addSex() |> summariseIndication( indicationCohortName = "cohort2", indicationWindow = list(c(0,0),c(-7,0),c(-30,0),c(-Inf,0)), unknownIndicationTable = "condition_occurrence", strata = list("age_group", "sex", c("age_group", "sex")) ) fx <- tableIndication(result, cdmName = FALSE, cohortName = FALSE, type = "flextable", header = "group") expect_true("flextable" %in% class(fx)) expect_true(all(colnames(fx$body$dataset) == c( 'Variable name', 'Age group', 'Sex', 'Indication', 'Estimate value' ))) expect_true(all(fx$body$dataset$`Variable name` |> levels() == c( "Indication any time before or on index date", "Indication from 30 days before to the index date", "Indication from 7 days before to the index date", "Indication on index date" ))) # expected errors expect_error(tableIndication(result, header = "variable")) expect_error(tableIndication(result, groupColumn = "cdm_name", cdmName = FALSE)) mockDisconnect(cdm = cdm) }) test_that("tableDoseCoverage", { drug_strength <- dplyr::tibble( drug_concept_id = c( 2905077, 1516983, 2905075, 1503327, 1516978, 1503326, 1503328, 1516980, 29050773, 1125360, 15033297, 15030327, 15033427, 15036327, 15394662, 43135274, 11253605, 431352774, 431359274, 112530, 1539465, 29050772, 431352074, 15394062, 43135277, 15033327, 11253603, 15516980, 5034327, 1539462, 15033528, 15394636, 15176980, 1539463, 431395274, 15186980, 15316978 ), ingredient_concept_id = c(rep(1,37)), amount_value = c(100,200,300,400,500,600,700,rep(NA,30)), amount_unit_concept_id = c( 8718, 9655, 8576, 44819154, 9551, 8587, 9573, rep(NA,30) ), numerator_value = c( rep(NA,7), 1, 300, 5, 10, 13, 20, 3, 5, 2, 1, 1, 4, 11, 270, 130, 32, 34, 40, 42, 15, 100, 105, 25, 44, 7, 3, 8, 12, 1, 31 ), denominator_unit_concept_id = c( rep(NA,7), 8576, 8587, 8505, 8505, 8587, 8587, 45744809, 8519, 8587, 8576, 8576, 8587, 8576, 8587, 8576, 8587, 8587, 8505, 8587, 8576, 8587, 45744809, 8505, 8519, 8576, 8587, 8576, 8587, 8576, 8587 ), denominator_value = c( rep(NA,7), 241, 30, 23, 410, 143, 2, 43, 15, 21, 1, 11, 42, 151, 20, rep(NA,16) ), numerator_unit_concept_id = c( rep(NA,7), 8718, 8718, 9655, 8576, 44819154, 9551, 8576, 8576, 8576, 8576, 8587, 8587, 9573, 9573, 8718, 8718, 9439, 9655, 44819154, 9551, 9551, 8576, 8576, 8576, 8576, 8576, 8587, 8587, 9573, 9573 ), valid_start_date = as.Date("1900-01-01"), valid_end_date = as.Date("2100-01-01") ) conceptsToAdd <- dplyr::tibble( concept_id = 1, concept_name = "ingredient 1", domain_id = "Drug", vocabulary_id = "RxNorm", concept_class_id = "Ingredient", standard_concept = "S" ) |> dplyr::bind_rows( dplyr::tibble( concept_id = c( 2905077, 1516983, 2905075, 1503327, 1516978, 1503326, 1503328, 1516980, 29050773, 1125360, 15033297, 15030327, 15033427, 15036327, 15394662, 43135274, 11253605, 431352774, 431359274, 112530, 1539465, 29050772, 431352074, 15394062, 43135277, 15033327, 11253603, 15516980, 5034327, 1539462, 15033528, 15394636, 15176980, 1539463, 431395274, 15186980, 15316978 ), concept_name = "NA", domain_id = "Drug", vocabulary_id = "RxNorm", concept_class_id = "Clinical Drug", standard_concept = "S" ) |> dplyr::mutate(concept_name = paste0("drug", concept_id)) ) concept <- mockConcept |> dplyr::anti_join(conceptsToAdd, by = "concept_id") |> dplyr::bind_rows(conceptsToAdd) concept_ancestor <- mockConceptAncestor |> dplyr::bind_rows(dplyr::tibble( ancestor_concept_id = 1, descendant_concept_id = conceptsToAdd$concept_id, min_levels_of_separation = 0, max_levels_of_separation = 0 )) concept_relationship <- dplyr::tibble( concept_id_1 = c(2905077, 1516983, 2905075, 1503327, 1516978, 1503326, 1503328, 1516980, 29050773, 1125360, 15033297, 15030327, 15033427, 15036327, 15394662, 43135274, 11253605, 431352774, 431359274, 112530, 1539465, 29050772, 431352074, 15394062, 43135277, 15033327, 11253603, 15516980, 5034327, 1539462, 15033528, 15394636, 15176980, 1539463, 431395274, 15186980, 15316978), concept_id_2 = c(19016586, 46275062, 35894935, 19135843, 19082107, 19011932, 19082108, 2008660, 2008661, 2008662, 19082109, 43126087, 19130307, 42629089, 19103220, 19082048, 19082049, 19082256, 19082050, 19082071, 19082072, 19135438, 19135446, 19135439, 19135440, 46234466, 19082653, 19057400, 19082227, 19082286, 19009068, 19082628, 19082224, 19095972, 19095973, 35604394, 702776 ), relationship_id = c(rep("RxNorm has dose form", 37)), valid_start_date = as.Date("1900-01-01"), valid_end_date = as.Date("2100-01-01") ) cdm <- mockDrugUtilisation( con = connection(), writeSchema = schema(), seed = 11, drug_strength = drug_strength, concept = concept, numberIndividuals = 50, concept_ancestor = concept_ancestor, concept_relationship = concept_relationship ) coverage <- summariseDoseCoverage(cdm, 1) # default default <- tableDoseCoverage(coverage) expect_true("gt_tbl" %in% class(default)) expect_true(all(colnames(default$`_data`) == c( 'Database name', 'Ingredient name', 'Unit', 'Route', 'Pattern id', '[header_level]Number records\n[header_level]N', '[header_level]Missing dose\n[header_level]N (%)', '[header_level]Daily dose\n[header_level]Mean (SD)', '[header_level]Daily dose\n[header_level]Median (Q25 - Q75)' ))) # other options working tib1 <- tableDoseCoverage(coverage, type = "tibble", ingridientName = FALSE, splitStrata = FALSE) expect_true(all(colnames(tib1) == c( 'Database name', 'Strata name', 'Strata level', '[header_level]Number records\n[header_level]N', '[header_level]Missing dose\n[header_level]N (%)', '[header_level]Daily dose\n[header_level]Mean (SD)', '[header_level]Daily dose\n[header_level]Median (Q25 - Q75)' ))) fx1 <- tableDoseCoverage(coverage, header = c("cdm_name", "group"), groupColumn = "variable_name", type = "flextable") expect_true("flextable" %in% class(fx1)) expect_true(all(colnames(fx1$body$dataset) == c( 'Variable name', 'Unit', 'Route', 'Pattern id', 'Estimate name', 'Database name\nDUS MOCK\nIngredient name\nIngredient 1' ))) expect_true(all(fx1$body$dataset$`Variable name` |> levels() == c("Daily dose", "Missing dose", "Number records"))) gt1 <- tableDoseCoverage(coverage, header = c("group")) expect_true(all(colnames(gt1$`_data`) == c( 'Database name', 'Unit', 'Route', 'Pattern id', 'Variable', 'Estimate name', '[header]Ingredient name\n[header_level]Ingredient 1' ))) # expected errors expect_error(tableDoseCoverage(coverage, header = "variable", groupColumn = "variable_name")) expect_error(tableDoseCoverage(coverage, groupColumn = "cdm_name", cdmName = FALSE)) expect_error(tableDoseCoverage(coverage, header = "hi")) mockDisconnect(cdm = cdm) }) test_that("tableDrugUtilisation", { cdm <- mockDrugUtilisation( con = connection(), writeSchema = schema(), drug_exposure = dplyr::tibble( drug_exposure_id = 1:12, person_id = c(1, 1, 1, 2, 2, 3, 3, 1, 2, 4, 4, 1), drug_concept_id = c( 1125360, 2905077, 1125360, 1125360, 1125315, 1125360, 1125360, 1503327, 1503328, 1503297, 1503297, 1125360 ), drug_exposure_start_date = as.Date(c( "2020-01-15", "2020-01-20", "2020-02-20", "2021-02-15", "2021-05-12", "2022-01-12", "2022-11-15", "2020-01-01", "2021-03-11", "2010-01-01", "2010-03-15", "2025-01-01" )), drug_exposure_end_date = as.Date(c( "2020-01-25", "2020-03-15", "2020-02-28", "2021-03-15", "2021-05-25", "2022-02-15", "2022-12-14", "2020-04-13", "2021-04-20", "2010-01-05", "2010-05-12", "2025-12-31" )), drug_type_concept_id = 0, quantity = c(10, 20, 30, 1, 10, 5, 15, 20, 30, 14, 10, 2) ), dus_cohort = dplyr::tibble( cohort_definition_id = c(1, 2, 1, 1, 1, 2), subject_id = c(1, 1, 2, 3, 4, 4), cohort_start_date = as.Date(c( "2020-01-15", "2020-01-24", "2021-01-15", "2022-02-01", "2010-01-05", "2010-01-05" )), cohort_end_date = as.Date(c( "2020-02-28", "2020-02-10", "2021-06-08", "2022-12-01", "2010-03-15", "2010-03-15" )), extra_column = "asd" ), observation_period = dplyr::tibble( observation_period_id = 1:4, person_id = 1:4, observation_period_start_date = as.Date("2000-01-01"), observation_period_end_date = as.Date("2030-01-01"), period_type_concept_id = 0 ), person = dplyr::tibble( person_id = c(1, 2, 3, 4) |> as.integer(), gender_concept_id = c(8507, 8507, 8532, 8532) |> as.integer(), year_of_birth = c(2000, 2000, 1988, 1964) |> as.integer(), day_of_birth = c(1, 1, 24, 13) |> as.integer(), month_of_birth = 1L, birth_datetime = as.Date(c( "2004-05-22", "2003-11-26", "1988-01-24", "1964-01-13" )), race_concept_id = 0L, ethnicity_concept_id = 0L, location_id = 0L, provider_id = 0L, care_site_id = 0L ) ) result <- cdm$dus_cohort |> PatientProfiles::addSex(name = "dus_cohort") |> summariseDrugUtilisation(ingredientConceptId = c(1125315, 1539403, 1503297, 1516976), strata = list("sex")) # default default <- tableDrugUtilisation(result) expect_true("gt_tbl" %in% class(default)) expect_true(all(colnames(default$`_data`) == c( 'Database name', 'Variable', 'Unit', 'Estimate name', 'Concept set', 'Ingredient', '[header]Cohort name\n[header_level]Cohort 1\n[header]Sex\n[header_level]Overall', '[header]Cohort name\n[header_level]Cohort 1\n[header]Sex\n[header_level]Female', '[header]Cohort name\n[header_level]Cohort 1\n[header]Sex\n[header_level]Male', '[header]Cohort name\n[header_level]Cohort 2\n[header]Sex\n[header_level]Overall', '[header]Cohort name\n[header_level]Cohort 2\n[header]Sex\n[header_level]Female', '[header]Cohort name\n[header_level]Cohort 2\n[header]Sex\n[header_level]Male' ))) # other options working expect_warning(tib1 <- tableDrugUtilisation(result, type = "tibble", cohortName = FALSE, splitStrata = FALSE)) expect_true(all(colnames(tib1) == c( "Database name", "Strata name", "Strata level", "Variable", "Unit", "Estimate name", "Estimate value", "Concept set", "Ingredient" ))) fx1 <- tableDrugUtilisation(result, header = c("cdm_name", "group"), groupColumn = "variable_name", type = "flextable") expect_true("flextable" %in% class(fx1)) expect_true(all(colnames(fx1$body$dataset) == c( 'Variable name', 'Sex', 'Unit', 'Estimate name', 'Concept set', 'Ingredient', 'Database name\nDUS MOCK\nCohort name\nCohort 1', 'Database name\nDUS MOCK\nCohort name\nCohort 2' ))) expect_true(all(fx1$body$dataset$`Variable name` |> levels() == c( 'Cumulative dose', 'Cumulative quantity', 'Exposed time', 'Initial daily dose', 'Initial quantity', 'Number eras', 'Number exposures', 'Number records', 'Number subjects', 'Time to exposure' ))) gt1 <- tableDrugUtilisation(result |> dplyr::filter(additional_level != "ingredient_1125315_descendants &&& acetaminophen"), header = c("group"), ingredient = FALSE) expect_true(all(colnames(gt1$`_data`) == c( 'Database name', 'Sex', 'Variable', 'Unit', 'Estimate name', 'Concept set', '[header]Cohort name\n[header_level]Cohort 1', '[header]Cohort name\n[header_level]Cohort 2' ))) gt2 <- tableDrugUtilisation(result |> dplyr::filter(is.na(variable_level))) expect_true(all(colnames(gt2$`_data`) == c( 'Database name', 'Variable', 'Estimate name', 'Concept set', '[header]Cohort name\n[header_level]Cohort 1\n[header]Sex\n[header_level]Overall', '[header]Cohort name\n[header_level]Cohort 1\n[header]Sex\n[header_level]Female', '[header]Cohort name\n[header_level]Cohort 1\n[header]Sex\n[header_level]Male', '[header]Cohort name\n[header_level]Cohort 2\n[header]Sex\n[header_level]Overall', '[header]Cohort name\n[header_level]Cohort 2\n[header]Sex\n[header_level]Female', '[header]Cohort name\n[header_level]Cohort 2\n[header]Sex\n[header_level]Male' ))) # expected errors expect_error(tableDrugUtilisation(result |> dplyr::filter(is.na(variable_level)), conceptSet = FALSE)) expect_error(tableDrugUtilisation(result, header = "variable", groupColumn = "variable_name")) expect_error(tableDrugUtilisation(result, groupColumn = "cdm_name", cdmName = FALSE)) expect_error(tableDrugUtilisation(result, header = "hi")) mockDisconnect(cdm = cdm) }) test_that("tableDrugRestart", { cdm <- mockDrugUtilisation( con = connection(), writeSchema = schema(), drug_exposure = dplyr::tibble( drug_exposure_id = 1:12, person_id = c(1, 1, 1, 2, 2, 2, 1, 1, 2, 4, 4, 1), drug_concept_id = c( 1125360, 2905077, 1125360, 1125360, 1125315, 1125360, 1125360, 1503327, 1503328, 1503297, 1503297, 1125360 ), drug_exposure_start_date = as.Date(c( "2020-01-15", "2020-01-20", "2020-02-20", "2021-02-15", "2021-05-12", "2022-01-12", "2022-11-15", "2020-01-01", "2021-03-11", "2010-01-01", "2010-03-15", "2025-01-01" )), drug_exposure_end_date = as.Date(c( "2020-01-25", "2020-03-15", "2020-02-28", "2021-03-15", "2021-05-25", "2022-02-15", "2022-12-14", "2020-04-13", "2021-04-20", "2010-01-05", "2010-05-12", "2025-12-31" )), drug_type_concept_id = 0, quantity = c(10, 20, 30, 1, 10, 5, 15, 20, 30, 14, 10, 2) ), dus_cohort = dplyr::tibble( cohort_definition_id = c(1, 1, 1, 1, 1, 2, 2, 2, 2), subject_id = c(1, 1, 2, 3, 4, 4, 1, 2, 3), cohort_start_date = as.Date(c( "2020-01-15", "2020-03-24", "2021-01-15", "2022-02-01", "2010-01-05", "2010-03-16", "2022-02-01", "2010-01-05", "2010-01-05" )), cohort_end_date = as.Date(c( "2020-02-28", "2020-05-10", "2021-06-08", "2022-12-01", "2010-03-15", "2010-03-30", "2023-02-01", "2010-05-05", "2010-01-05" )), censor_column = as.Date(c( "2021-02-28", "2021-05-10", "2022-06-08", "2023-12-01", "2010-05-15", "2011-03-30", "2022-02-01", "2011-05-06", "2010-03-05" )) ), observation_period = dplyr::tibble( observation_period_id = 1:4, person_id = 1:4, observation_period_start_date = as.Date("2000-01-01"), observation_period_end_date = as.Date("2030-01-01"), period_type_concept_id = 0 ), person = dplyr::tibble( person_id = c(1, 2, 3, 4) |> as.integer(), gender_concept_id = c(8507, 8507, 8532, 8532) |> as.integer(), year_of_birth = c(2000, 2000, 1988, 1964) |> as.integer(), day_of_birth = c(1, 1, 24, 13) |> as.integer(), month_of_birth = 1L, birth_datetime = as.Date(c( "2004-05-22", "2003-11-26", "1988-01-24", "1964-01-13" )), race_concept_id = 0L, ethnicity_concept_id = 0L, location_id = 0L, provider_id = 0L, care_site_id = 0L ) ) conceptlist <- list("a" = 1125360, "b" = c(1503297, 1503327), "c" = 1503328) cdm <- generateDrugUtilisationCohortSet(cdm = cdm, name = "switch_cohort", conceptSet = conceptlist) results <- cdm$dus_cohort |> PatientProfiles::addDemographics( ageGroup = list(c(0,50), c(51,100)) ) |> summariseDrugRestart( switchCohortTable = "switch_cohort", followUpDays = c(100, 300, Inf), strata = list("age_group", "sex", c("age_group", "sex")) ) gt1 <- tableDrugRestart(results) expect_true(inherits(gt1, "gt_tbl")) expect_true(all(colnames(gt1$`_data`) == c( 'cdm_name_cohort_name', 'Follow-up', 'Event', 'Estimate name', '[header]Age group\n[header_level]0 to 50\n[header]Sex\n[header_level]Overall', '[header]Age group\n[header_level]0 to 50\n[header]Sex\n[header_level]Female', '[header]Age group\n[header_level]0 to 50\n[header]Sex\n[header_level]Male', '[header]Age group\n[header_level]Overall\n[header]Sex\n[header_level]Overall', '[header]Age group\n[header_level]Overall\n[header]Sex\n[header_level]Female', '[header]Age group\n[header_level]Overall\n[header]Sex\n[header_level]Male' ))) tib1 <- tableDrugRestart(results, header = c("cohort_name", "estimate"), groupColumn = NULL, cdmName = FALSE, type = "tibble") expect_true(all(colnames(tib1) == c( 'Age group', 'Sex', 'Follow-up', 'Event', '[header]Cohort name\n[header_level]Cohort 1\n[header_level]N (%)', '[header]Cohort name\n[header_level]Cohort 2\n[header_level]N (%)' ))) fx1 <- tableDrugRestart(results |> dplyr::filter(group_level == "cohort_1"), header = c("cohort_name", "estimate"), cohortName = FALSE, groupColumn = list("group" = c("variable_name", "variable_level")), cdmName = FALSE, type = "flextable") expect_true(all(colnames(fx1$body$dataset) == c( "group", "Age group", "Sex", "N (%)" ))) mockDisconnect(cdm = cdm) }) test_that("tableIndication works", { cdm <- mockDrugUtilisation( con = connection(), writeSchema = schema(), dus_cohort = dplyr::tibble( cohort_definition_id = 1, subject_id = c(1, 1, 2, 3, 4), cohort_start_date = as.Date(c("2000-01-01","2000-01-10", "2002-01-01", "2010-01-01", "2011-01-01")), cohort_end_date = as.Date(c("2000-01-05","2000-01-15", "2002-01-15", "2010-01-20", "2011-01-20")) ), observation_period = dplyr::tibble( observation_period_id = 1:4, person_id = 1:4, observation_period_start_date = as.Date(c("2000-01-01", "2002-01-01", "2010-01-01", "2011-01-01")), observation_period_end_date = as.Date(c("2000-01-25", "2002-01-15", "2010-01-25", "2011-01-25")), period_type_concept_id = 0 ) ) cdm$dus_cohort <- cdm$dus_cohort |> dplyr::mutate(var0 = "group", var1 = dplyr::if_else(subject_id == 1, "group_1", "group_2"), var2 = dplyr::if_else(subject_id %in% c(1,2), "group_a", "group_b")) ppc <- cdm$dus_cohort |> summariseProportionOfPatientsCovered(followUpDays = 30, strata = c("var1", "var2")) #without times specified expect_no_error(tableProportionOfPatientsCovered(ppc)) #with times specified expect_no_error(tableProportionOfPatientsCovered(ppc, times = c(0,5,10,15))) # after suppression ppc_suppressed <- omopgenerics::suppress(ppc, 4) expect_no_error(tableProportionOfPatientsCovered(ppc_suppressed)) mockDisconnect(cdm = cdm) })